This SuperSeries is composed of the SubSeries listed below.
Activity-dependent regulation of inhibitory synapse development by Npas4.
No sample metadata fields
View Sampleswe performed a DNA microarray experiment to identify activity-regulated genes that are misregulated in the absence of Npas4.
Activity-dependent regulation of inhibitory synapse development by Npas4.
No sample metadata fields
View Sampleswe used DNA microarray analysis to identify genes that are induced by neuronal activity in excitatory neurons at the time when inhibitory synapses are forming and maturing on them.
Activity-dependent regulation of inhibitory synapse development by Npas4.
No sample metadata fields
View SamplesProstate cancer is the most commonly diagnosed malignancy in the United States. While the majority of cases are cured with radiation or surgery, about 1/3 of patients will develop metastatic disease which there is no cure, and has a life expectancy of less than 5 years. Identification of antigens associated with this transition to metastatic disease is crucial for future therapies. One such antigen of interest is the SSX gene family, which are cancer/testis antigens that are associated with the epithelial to mesenchymal transition in other cancer types. Prior work has shown that, in prostate cancer, SSX expression was restricted to metastatic tissue and not primary tumor tissue which may indicate a role in disease progression. Some work has been done into the function of the SSX family, which revealed transcriptional regulator activity. But neither the targets of this activity or the function of SSX are known. Through a transcriptomics approach, we are seeking a better understanding of the different genes and pathways SSX regulates in the context of prostate cancer, and to determine if these pathways may contribute to disease progression.
SSX2 regulates focal adhesion but does not drive the epithelial to mesenchymal transition in prostate cancer.
Cell line
View SamplesViral infection can dramatically alter a cell''s transcriptome. However, these changes have mostly been studied by bulk measurements on many cells. Here we use single-cell mRNA sequencing to examine the transcriptional consequences of influenza virus infection. We find extremely wide cell-to-cell variation in production of viral gene transcripts -- viral transcripts compose less than a percent of total mRNA in many infected cells, but a few cells derive over half their mRNA from virus. Some infected cells fail to express at least one viral gene, and this gene absence partially explains variation in viral transcriptional load. Despite variation in total viral load, the relative abundances of viral mRNAs are fairly consistent across infected cells. Activation of innate immune pathways is rare, but some cellular genes co-vary in abundance with the amount of viral mRNA. Overall, our results highlight the complexity of viral infection at the level of single cells. Overall design: Dataset consists of a total of five single-cell datasets generated using the 10x Genomics Chromium Single Cell 3'' Solution platform. All samples were generated from a tissue culture infection model using A549 cells from ATCC and Influenza A/WSN/1933 virus. Uninfected control sample identically processed. Infected samples were generated from cells infected for 6, 8, and 10 hours with a single replicate at 8 hours.
Extreme heterogeneity of influenza virus infection in single cells.
Cell line, Subject
View SamplesTo identify sex-based differences in gene pathways affected by endgoenous genomic instaiblity resulting in embryonic death, total RNA from E13.5 placentas was isolated for RNAseq. Placentas from male and female embryos from wild-type matings and Mcm4^C3/C3 homozygous matings were used as references. Male and female placentas derived from embryos of the genotype : Mcm4^C3/C3 Mcm2^Gt/+ from either male Mcm4^C3/+ Mcm2^Gt/+ crossed to female Mcm4^C3/C3 or male Mcm4^C3/C3 crossed to female Mcm4^C3/+ Mcm2^Gt/+ were the experimental samples. Overall design: Total RNA was isolated from E13.5 placentas and subjected to directional RNAseq to identify sex-based transciptome differences.
Female-biased embryonic death from inflammation induced by genomic instability.
Specimen part, Cell line, Subject
View SamplesEarlier studies had shown that side population cells isolated from established non-small cell lung cancer (NSCLC) cell lines exhibit cancer stem cell properties. Microarray data from side population (SP) and main population (MP) cells isolated from 4 NSCLC lines (A549, H1650, H460, H1975) were used to examine gene expression profiles associated with stemness. Total RNA extracted from SP and MP samples were used to generate cRNA targets, which were hybridized to Human Genome U133 Plus 2.0 probe arrays. Raw data was processed and the mean center expression level for each gene was determined.
A novel five gene signature derived from stem-like side population cells predicts overall and recurrence-free survival in NSCLC.
Cell line
View SamplesWe created a comprehensive tRNA deletion library in yeast and characterized the phenotypic and further characterized the molecular changes in a subset of deletion strains
A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool.
No sample metadata fields
View SamplesA comparison of gene expression between control versus IPF human lung MPC using human Affy 1.0st chips.
Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction.
Specimen part, Disease, Disease stage
View SamplesHere, we present a systematic and quantitative test of the hypothesis that the composition and activities of the endoplasmic reticulum (ER) proteostasis network impact mutational tolerance of secretory pathway client proteins. We focus on influenza hemagluttinin (HA), a viral coat protein that folds in the host's ER via a complex but well-characterized pathway. By integrating chemical methods to modulate the unfolded protein response with deep mutational scanning to assess mutational tolerance, we discover that upregulation of ER chaperones broadly enhances HA mutational tolerance across numerous sites and secondary/tertiary structure elements, including sites targeted by host antibodies. Remarkably, this host chaperone-enhanced mutational tolerance is observed at the same HA sites where mutational tolerance is most reduced by propagation at a fever-like temperature. Thus, host ER proteostasis mechanisms and temperature modulate HA mutational tolerance in opposite directions. This finding has important implications for influenza evolution, because influenza immune escape is contingent on HA possessing sufficient mutational tolerance to acquire antibody resistance while still maintaining the capacity to fold and function. More broadly, this work provides the first experimental evidence that the composition and activities of the ER proteostasis network critically define the mutational tolerance and, therefore, the evolution of secretory pathway client proteins. Overall design: RNA-seq characterizing a clonal HEK293T-Rex cell line, expressing DHFR ATF6f, Tet XBP1s, and the tetracycline repressor. These cell lines were treated with small molecules for 24 hours (in triplicate) to modulate the proteostasis environment in a stress-independent manner, at either 37C or 39C. XBP1s was activated by treatment with 0.1 ug/mL Doxycycline; ATF6f/XBP1s were activated by treatment with 0.1 ug/mL Doxycycline and 1 uM TMP; basal cells were vehicle-treated (0.01% DMSO). These cells were previously characterized in Shoulders et al. Cell Reports, 2013.
Enhanced ER proteostasis and temperature differentially impact the mutational tolerance of influenza hemagglutinin.
Specimen part, Cell line, Subject
View Samples