FNDC4 is a novel secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in various mouse models of inflammation as well as in human inflammatory conditions. Specifically, subjects with inflammatory bowel disease show increased FNDC4 levels locally at inflamed sites of the intestine. Interestingly, administration of recombinant FNDC4 during colitis development in mice resulted in markedly reduced disease severity compared to mice injected with a control protein. Conversely, mice that lacked Fndc4 showed increased colitis severity. Analysis of binding of FNDC4 to different immune cell types revealed strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro resulted in reduced phagocytosis, improved survival and reduced pro-inflammatory chemokine expression. Hence, treatment with FNDC4 resulted in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized a novel factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases.
FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice.
Sex, Specimen part, Treatment
View SamplesThe stomach is often considered a single compartment, but morphological differences among different areas are well known. Oxyntic mucosa (OXY) is primarily equipped for acid secretion, while it is not enough clear if gastric functional control are shared with other areas.
Differential gene expression in the oxyntic and pyloric mucosa of the young pig.
Sex, Specimen part
View SamplesCD8+ T-cells inhibit virus replication in SIV-infected rhesus macaques (RM). However, it is unclear to what extent the viral suppression mediated by CD8+ T-cells reflects direct killing of infected cells as opposed to indirect, non-cytolytic mechanisms. In this study, we used functional genomics to investigate potential mechanisms of in vivo viral suppression mediated by CD8+ lymphocytes. Eight chronically SIVmac239-infected RMs underwent CD8+ lymphocyte depletion, and RNA from whole blood was obtained prior to depletion, at the nadir of CD8+ lymphocytes (5 days post-depletion), and during the repopulation phase (11 days post-depletion). Principal components analysis demonstrated that overall gene expression during the nadir of CD8+ T-cells was highly divergent from other intervals. Conversely, the genomic signature of samples from the CD8+ cell rebound phase was similar to that of pre-depletion samples. During CD8+ lymphocyte depletion we detected a strongly significant decrease in the expression of the genes encoding CD8 and CD8 chains, consistent with the near complete CD8+ T-cell depletion measured by flow cytometry. Of note, we observed significant down-regulation of the expression of genes encoding for factors that can suppress SIV replication, including the CCR5-binding chemokine CCL5/Rantes, several retroviral restriction factors (TRIM10, TRIM15, APOBEC3G/H) and defensins. Reduced expression of various genes related to T cell activation and proliferation was also observed. Collectively, these data indicate that depletion of CD8+ lymphocytes in SIV-infected RMs is associated with the establishment of a pattern of gene expression that may result in increased intrinsic permissivity to virus replication.
Transcriptional profiling of experimental CD8(+) lymphocyte depletion in rhesus macaques infected with simian immunodeficiency virus SIVmac239.
No sample metadata fields
View SamplesBackground: The selective absorption of nutrients and other food constituents in the small intestine is mediated by a group of transport proteins and metabolic enzymes, often collectively called intestinal barrier proteins. An important receptor that mediates the effects of dietary lipids on gene expression is the peroxisome proliferator-activated receptor alpha (PPAR), which is abundantly expressed in enterocytes. In this study we examined the effects of acute nutritional activation of PPAR on expression of genes encoding intestinal barrier proteins. To this end we used triacylglycerols composed of identical fatty acids in combination with gene expression profiling in wild-type and PPAR-null mice. Treatment with the synthetic PPAR agonist WY14643 served as reference.
PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression.
No sample metadata fields
View SamplesAn early settlement of a complex gut microbiota can protect against gastro-intestinal dysbiosis, but the effects of neonatal microbiota colonization and early life feeding of medium chain triglycerides on the maturation of the porcine gastric mucosa are largely unknown.
The effects of starter microbiota and the early life feeding of medium chain triglycerides on the gastric transcriptome profile of 2- or 3-week-old cesarean delivered piglets.
Specimen part
View SamplesAn early settlement of a complex gut microbiota can protect against gastro-intestinal dysbiosis, but the effects of neonatal microbiota colonization on the maturation of the porcine gastric mucosa are largely unknown.
The effects of starter microbiota and the early life feeding of medium chain triglycerides on the gastric transcriptome profile of 2- or 3-week-old cesarean delivered piglets.
Specimen part
View SamplesHyperimmune activation is one of the strong predictors of disease progression during pathogenic immunodeficiency virus infections and is mediated in part by sustained type I interferon (IFN) signaling. Combination antiretroviral therapy suppresses hyperimmune activation only partially in HIV-infected individuals. Here, we show that blockade of Programmed Death-1 (PD-1) during chonic SIV infection significantly reduces the expression of transcripts associated with type I IFN signaling in the blood and colorectal tissue of rhesus macaques (RM). The effect of PD-1 blockade on type I IFN signaling was durable and persisted under high viremia, a condition that is seen in nonprogressive SIV infection in their natural hosts. The reduced type I IFN signaling was associated with enhanced expression of some of the junction-associated genes in the colorectal tissue and a profound decrease in LPS levels in plasma suggesting a possible repair of gut associated junctions and decreased microbial translocation. The reduced type I IFN signaling was also associated with enhanced immunity against gut resident pathogenic bacteria, control of gut associated opportunistic infections and survival of SIV-infected RMs. These results reveal novel mechanisms by which PD-1 blockade enhances survival of SIV-infected RMs and have implications for development of novel therapeutic approaches to control HIV/AIDS.
PD-1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques.
Specimen part, Disease, Disease stage, Treatment
View SamplesIn SIV/HIV infection, the gastrointestinal tissue dominates as an important site due to the impact of massive mucosal CD4 depletion and immune activation-induced tissue pathology. Unlike AIDS-susceptible rhesus macaques, natural hosts do not progress to AIDS and resolve immune activation earlier. Here, we examine the role of dendritic cells in mediating immune activation and disease progression. We demonstrate that plasmacytoid dendritic cells (pDC) in the blood upregulate 7-integrin and are rapidly recruited to the colorectum following a pathogenic SIV infection in rhesus macaques. These pDC were capable of producing proinflammatory cytokines and primed a Tc1 response in vitro. Consistent with the upregulation of 7-integrin on pDC, in vivo blockade of 47-integrin dampened pDC recruitment to the colorectum and resulted in reduced immune activation. The upregulation of 7-integrin expression on pDC in the blood was also observed in HIV-infected humans but not in chronically SIV-infected sooty mangabeys that show low levels of immune activation. Our results uncover a new mechanism by which pDC influence immune activation in colorectal tissue following pathogenic immunodeficiency virus infections.
Plasmacytoid dendritic cells are recruited to the colorectum and contribute to immune activation during pathogenic SIV infection in rhesus macaques.
Specimen part
View SamplesAn early settlement of a complex gut microbiota can protect against gastro-intestinal dysbiosis, but the effects of neonatal microbiota colonization on the gut barrier upon the further encounter of favorable bacteria or not, are largely unknown.
Molecular networks affected by neonatal microbial colonization in porcine jejunum, luminally perfused with enterotoxigenic Escherichia coli, F4ac fimbria or Lactobacillus amylovorus.
Specimen part, Treatment
View SamplesThe 2009 H1N1 influenza pandemic has prompted a significant need for the development of efficient, single-dose, adjuvanted vaccines. Here we investigated the adjuvant potential of CpG oligodeoxynucleotide (ODN) when used with a human seasonal influenza virus vaccine in ferrets. We found that the CpG ODNadjuvanted vaccine effectively increased antibody production and activated type I interferon (IFN) responses compared to vaccine alone. Based on these findings, pegylated IFN- 2b (PEG-IFN) was also evaluated as an adjuvant in comparison to CpG ODN and complete Freunds adjuvant (CFA). Our results showed that all three vaccines with adjuvant added prevented seasonal human A/Brisbane/59/2007 (H1N1) virus replication more effectively than did vaccine alone. Gene expression profiles indicated that, as well as upregulating IFN-stimulated genes (ISGs), CpG ODN enhanced B-cell activation and increased Toll-like receptor 4 (TLR4) and IFN regulatory factor 4 (IRF4) expression, whereas PEG-IFN augmented adaptive immunity by inducing major histocompatibility complex (MHC) transcription and Ras signaling. In contrast, the use of CFA as an adjuvant induced limited ISG expression but increased the transcription of MHC, cell adhesion molecules, and B-cell activation markers. Taken together, our results better characterize the specific molecular pathways leading to adjuvant activity in different adjuvant-mediated influenza virus vaccinations.
Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus.
Specimen part, Treatment
View Samples