This SuperSeries is composed of the SubSeries listed below.
Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection.
No sample metadata fields
View SamplesThe phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1-cDC2) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen presenting cells (APC). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of Fc receptor CD64 shared with MCs, and of IRF8 shared with cDC1s. These inflammatory (Inf-)cDC2s were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2 matured in response to cell-intrinsic toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module and acquired antigens via convalescent serum and Fc receptors. Since hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs.
Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection.
No sample metadata fields
View SamplesFNDC4 is a novel secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in various mouse models of inflammation as well as in human inflammatory conditions. Specifically, subjects with inflammatory bowel disease show increased FNDC4 levels locally at inflamed sites of the intestine. Interestingly, administration of recombinant FNDC4 during colitis development in mice resulted in markedly reduced disease severity compared to mice injected with a control protein. Conversely, mice that lacked Fndc4 showed increased colitis severity. Analysis of binding of FNDC4 to different immune cell types revealed strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro resulted in reduced phagocytosis, improved survival and reduced pro-inflammatory chemokine expression. Hence, treatment with FNDC4 resulted in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized a novel factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases.
FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice.
Sex, Specimen part, Treatment
View SamplesTransformation of Glycine max with seed-targeted expression vectors via Agrobacterium causes measurable unscripted gene expression changes in the seed transcriptome Overall design: mRNA was sequenced from three transgenic events expressing three different recombinant proteins in soybean seeds. Three plants were chosen from each as group replicates, and three seeds from each plant as individual biological replicates.
Transcript Polymorphism Rates in Soybean Seed Tissue Are Increased in a Single Transformant of <i>Glycine max</i>.
Subject
View SamplesTime-point expression analysis of fractures calluses at 1, 3, and 5 days post-fracture in young and old BALB/c mice.
Identification of novel gene expression in healing fracture callus tissue by DNA microarray.
Age, Specimen part
View SamplesTo identify a cohort of rhythmically expressed genes in the murine Distal Colon,microarrays were used to measure gene expression over a 24-hour light/dark cycle.The rhythmic transcripts were classified according to expression patterns, functions and association with physiological and pathophysiological processes of the colon including motility, colorectal cancer formation and inflammatory bowel disease.
Transcriptional profiling of mRNA expression in the mouse distal colon.
No sample metadata fields
View SamplesFemale BRCA1 mutation carriers have a nearly 80% probability of developing breast cancer during their life-time. We hypothesized that the breast epithelium at risk in BRCA1 mutation carriers harbors mammary epithelial cells (MECs) with altered proliferation and differentiation properties.
Altered proliferation and differentiation properties of primary mammary epithelial cells from BRCA1 mutation carriers.
No sample metadata fields
View SamplesmiR-222 overexpression leads to promotion of proliferation and hypertrophy and inhibition of apoptosis in in primary neonatal rat ventricular cardiomyocytes (NRVMs).
miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling.
Specimen part
View SamplesCTSK-mGFP positive cells from Day 6 old mouse femurs were sorted as single cells into 384 well plates pre-loaded with unique barcoded RT-primers. After sorting, cells were snap frozen on dry ice before being submitted to the New York Genome Center (NYGC) for cDNA synthesis and library preparation. The FACS profile for all the sored cells were collected to co-relate with gene expression. Overall design: Mouse femur was obtained from mice within the same litter. Femur samples was subjected to collagenase digestion, and single cell suspension was obtained. The samples were stained for FACS antibodies and single cell sorting was performed into two individual 384 well plates. The experiment has two replicates from two independant animals. The samples were always kept discrete.
Discovery of a periosteal stem cell mediating intramembranous bone formation.
Specimen part, Cell line, Subject
View SamplesThe immune system generates pathogen-tailored responses. The precise innate immune cell types and pathways that direct robust adaptive immune responses have not been fully characterized. By using fluorescent pathogens combined with massively parallel single cell RNA-seq, we comprehensively characterized the initial 48 hours of the innate immune response to diverse pathogens. We found that across all pathogens tested, most of the lymph node cell types and states showed little pathogen-specificity. In contrast, the rare antigen-positive cells displayed pathogen-specific transcriptional programs as early as 24 hours after immunization. In addition, mycobacteria activated a specific NK driven IFN? response. Depletion of NK cells and IFN? showed that IFN? initiated a monocyte specific signaling cascade, leading to production of major chemokines and cytokines that promote Th1 development. Our systems immunology approach sheds light on early events in innate immune responses and may help further development of safe and efficient vaccines. Overall design: Transcriptional profiling of single cells from pathogen-injected mouse auricular lymph nodes, generated from deep sequencing of thousands of cells, sequenced in several batches on illumina Nextseq500. For all experiments, innate immune lymph node cells were sorted accordng to the markers indicated in Samples' Characteristics "selection marker" field into 384-well MARS-seq2.0 cell capture plates. Sorting of antigen-carrying cells (Ag+) was based on the AF488-fluorescence of the pathogens injected. Different pathogens and time points were used, as indicated in the Samples' Characteristics "infection" and "time points" fields.
Single-Cell Analysis of Diverse Pathogen Responses Defines a Molecular Roadmap for Generating Antigen-Specific Immunity.
Specimen part, Cell line, Subject, Time
View Samples