This SuperSeries is composed of the SubSeries listed below.
Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.
No sample metadata fields
View SamplesHow various ATP-dependent chromatin remodellers bind to nucleosomes to regulate transcription is not well defined in mammalian cells. Here, we present genome-wide remodeller-interacting nucleosome profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind to nucleosomes at specific positions, either at one or both nucleosomes that flank each side of nucleosome-free promoter regions (NFRs), at enhancer elements, or within gene bodies. At promoters, bidirectional transcription commonly initiates on either side of remodeller-bound nucleosomes. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. At active genes, certain remodellers are positive regulators of transcription, whereas others act as repressors. At bivalent genes, which are bound by repressive Polycomb complexes, the same remodellers act in the opposite way. Together, these findings reveal how remodellers integrate promoter nucleosomal architecture to regulate ES cell transcription programs.
Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.
No sample metadata fields
View SamplesHow various ATP-dependent chromatin remodellers bind to nucleosomes to regulate transcription is not well defined in mammalian cells. Here, we present genome-wide remodeller-interacting nucleosome profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind to nucleosomes at specific positions, either at one or both nucleosomes that flank each side of nucleosome-free promoter regions (NFRs), at enhancer elements, or within gene bodies. At promoters, bidirectional transcription commonly initiates on either side of remodeller-bound nucleosomes. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. At active genes, certain remodellers are positive regulators of transcription, whereas others act as repressors. At bivalent genes, which are bound by repressive Polycomb complexes, the same remodellers act in the opposite way. Together, these findings reveal how remodellers integrate promoter nucleosomal architecture to regulate ES cell transcription programs.
Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.
No sample metadata fields
View SamplesHepatocyte-nuclear-factor-4 (Hnf4) is a transcription factor that controls epithelial cell polarity and maturation during embryogenesis. Hnf4 conditional deletion during post-natal development results in minor consequences on intestinal epithelium integrity but promotes activation of the Wnt/-catenin pathway. Here we show that Hnf4 does not act as a tumor suppressor gene but is crucial to promote gut tumorigenesis in mice. Polyp multiplicity in ApcMin mice that lacks Hnf4 is suppressed in comparison to littermate ApcMin controls. Analysis of microarray gene expression profiles from mice lacking Hnf4 in the intestinal epithelium identifies its novel function in regulating the expression of reactive oxygen species (ROS) detoxifying genes. This role is supported with the demonstration that HNF4 is functionally involved in the protection against spontaneous and 5-fluorouracil chemotherapy-induced production of intracellular ROS in colorectal cancer cell lines. The analysis of a colorectal cancer patient cohort establishes that HNF4 is significantly up-regulated at both gene transcript and protein levels in tumors relative to adjacent benign epithelial resections. Several genes involved in ROS neutralization are also up-regulated in correlation with HNF4 expression. All together, the findings point to the nuclear receptor HNF4 as a potential therapeutic target to eradicate aberrant epithelial cell resistance to ROS production during intestinal tumorigenesis.
Hepatocyte nuclear factor-4alpha promotes gut neoplasia in mice and protects against the production of reactive oxygen species.
Specimen part
View SamplesBackground & Aims: HNF4 is an important transcriptional regulator of hepatocyte and pancreatic function. Hnf4 deletion is embryonically lethal with severe defects in visceral endoderm formation, liver maturation and colon development. However, the precise role of this transcription factor in maintaining homeostasis of the adult intestine remains unclear. Herein, we aimed to elucidate the adult intestinal functions of Hnf4. Methods: A conditional intestinal epithelial Hnf4 knockout mouse was generated. Histological abnormality of the colonic mucosa was assessed by immunodetection and Western. Changes in global gene expression and biological network were analyzed. Results: Hnf4 intestine null mice developed normally until reaching young adulthood. Crypt distortion became apparent in the Hnf4 null colon at 3 months of age followed by focal areas of crypt dropout, increased immune cell infiltrates, crypt hyperplasia and early signs of polyposis later in life. A gene profiling analysis identified cell death and cell cycle related to cancer as the most significant sets of genes altered in the Hnf4 colon null mice. Expression levels of the tight junction proteins claudin 4, 8 and 15 were altered early in the colon epithelium of Hnf4 mutants and correlated with increased barrier permeability to a molecular tracer that does not normally penetrate normal mucosa. Conclusion: These observations support a functional role for Hnf4 in protecting the colonic mucosa against the initiation of the changes resembling inflammatory bowel diseases and polyp formation.
Loss of hepatocyte-nuclear-factor-4alpha affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice.
No sample metadata fields
View SamplesRNA helicases DDX5 and DDX17 are members of a large family of highly conserved proteins involved in gene expression regulation, although their in vivo targets and activities in biological processes like cell differentiation, that requires reprogramming of gene expression programs at multiple levels, are not well characterized. In this report, we uncovered a new mechanism by which DDX5 and DDX17 cooperate with hnRNP H/F splicing factors to define epithelial- and myoblast-specific splicing subprograms. We next observed that downregulation of DDX5 and DDX17 protein expression during epithelial to mesenchymal transdifferentiation and during myogenesis contributes to switching splicing programs during these processes. Remarkably, this downregulation is mediated by the production of microRNAs induced upon differentiation in a DDX5/DDX17-dependent manner. Since DDX5 and DDX17 also function as coregulators of master transcriptional regulators of differentiation, we propose to name these proteins master orchestrators of differentiation, that dynamically orchestrate several layers of gene expression.
RNA helicases DDX5 and DDX17 dynamically orchestrate transcription, miRNA, and splicing programs in cell differentiation.
Specimen part, Cell line
View SamplesMurine B cells can be activated via the surface receptors TLR4 and CD40. For a global assessment of differences in gene expression between these two different modes of B cell activation a genome wide transcriptome analysis was performed. In order to dissect different gene expression profiles of B cells, activation was induced by LPS or LPS + anti-CD40 for 24h and 72h. Both activation states were compared to each other but also to nave B cells.
IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases.
Sex, Specimen part
View SamplesWe undertook an inter-laboratory effort to generate high-quality quantitative data for a very large number of cellular components in yeast using transcriptome and metabolome analysis. We ensured the high-quality of the experimental data by evaluating a wide range of sampling and measurement techniques. The data were generated for two different yeast strains, each growing under two different growth conditions and based on integrated analysis of the high-throughput data we hypothesize that differences in growth rates and yields on glucose between the two strains are due to differences in protein metabolism.
Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains.
No sample metadata fields
View SamplesWe report cell type specific Nova HITS-CLIP using BAC-transgenic lines expressing GFP-Nova under the motor neuron specific choline acetyltransferase (Chat) promoter. By comparing transcriptome wide Nova binding map in motor neurons and that in the whole spinal cord, we identified differential Nova binding sites in motor neurons, which correlate with motor neuron specific RNA processing. Overall design: 14 total samples were analyzed. For HITS-CLIP, 4 biological replicates were performed for each BAC-transgenic line, as well as the whole spinal cord. For RNA-seq, 2 biological repliates were performed on the whole spinal cord.
Cell type-specific CLIP reveals that NOVA regulates cytoskeleton interactions in motoneurons.
No sample metadata fields
View SamplesEffects of the prop-1 and Ghrhr mutations in gene expression during normal aging in mice.
Gene expression profile of long-lived Ames dwarf mice and Little mice.
Sex, Age, Specimen part, Disease, Disease stage
View Samples