Lung alveolarization is a complex process that involves interactions between several cell types and leads to considerable increase in gas-exchange surface area. The step designated secondary septation includes elastogenesis from interstitial fibroblasts.
Gene expression profiling in lung fibroblasts reveals new players in alveolarization.
No sample metadata fields
View SamplesDue to the urgent need of new targeting strategies in PCa, AR interacting proteins should be considered. In this study we aimed to test the effect of a long-term knockdown of NCOA1, an AR coactivator, in PCa progression and metastatogenesis and whether NCOA1 could be used as a possible therapeutic target. To test the consequences of NCOA1 knockdown on proliferation, we performed by 3H thymidine incorporation assays revealing a strong reduction in castration resistant MDA PCa 2b and androgen-dependent LNCaP cells, without affecting AR negative PC3 cells. Furthermore, Boyden chamber assays revealed a strong decrease in migration and invasion upon NCOA1 knockdown. Using a cDNA microarray, we identified protein kinase D1 (PRKD1) as one prominent upregulated gene in MDA PCa 2b, which was not seen in PC3 cells. Knockdown of PRKD1 clearly reverted the reduced migratory potential. Moreover, we found phospholipase A2, group7 (PLA2G7) and eukaryotic translation initiation factor 5A2 (EIF5A2), which might be involved in migration of PC3 cells. Further, we can clearly demonstrate that PRKD1 is negatively regulated by the AR/NCOA1 complex. In addition, immunhistochemical staining revealed a strong increase in NCOA1 expression in matched and unmatched patients samples, respectively between normal prostate and primary tumor. Regarding the PRKD1 staining, no final conclusion can be drawn in terms of a tumor suppressor function. Thus, our findings directly associate NCOA1/AR complex with PRKD1 regulation and further suggest NCOA1 as a potential therapeutic target also due to the effect on PC3 cell migration.
The AR/NCOA1 axis regulates prostate cancer migration by involvement of PRKD1.
Cell line
View SamplesRNA sequencing analysis of gene expression in serrated colon polyps, uninvolved colon and control colon Overall design: 86 colon RNA sequencing datasets (21 sessile serrated adenomas/polyps, 10 hyperplastic polyps, 10 adenomatous polyps, 21 uninvolved colon, 20 control colon and 4 colon cancer)
Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells.
No sample metadata fields
View SamplesScnn1b-Tg mice overexpress the beta subunit of the epithelial sodium channel (Scnn1b) in airway Club cells. The general phenotype of these mice is described in three published manuscripts (Mall et al. 2004, Nature Medicine, 10(5):487-93; Mall et al. 2008, Am J Respir Crit Care Med. 177(7):730-42; and Livraghi-Butrico et al. 2012, Physiol. Genomics 44(8):470-84. Briefly, overexpression of the Scnn1b transgene in airway Club cells leads to hyperabsorption of sodium from the airway surface liquid, dehydrated airway surface liquid and mucus, and reduced mucus clearance associated with accumulation of mucus plugs/plaques. The data provided here represents mRNA expression data from disseccted whole trachea (distal and proximal ends cut 3-4 cartliage rings below the larynx and just above the bifurcation, respectively) from male WT and Scnn1b-Tg littermates (C57Bl/6NTac background) at 4 time points [postnatal days (PND) 0, 3, 10, and 42]. PND 0 trachea are histologically normal, a tracheal mucus plug/obstruction develops around PND 3, the plug is receding to more distal airways by PND 10, and the trachea is again histologically normal by PND 42. The data from the WT mice provides a global look at mRNA changes across time, while the data from the Scnn1b-Tg line provides mRNA data that allows differential gene expression due to mucus obstruction to be queried.
Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration.
No sample metadata fields
View SamplesMicroarrays were used to evaluate the effects of azithromycin and an inflammatory stimulus (SMM) on human airway epithelium. Effects of azithromycin treatment were evaluated at 6, 24 and 48 hours. Effects of SMM were evaluated at 6 and 24 hours. In addition, pretreatment with azithromycin was used to evaluate the modulatory effects on SMM-induced inflammation. SMM=supernatant from microcorpulent material from human cystic fibrosis airways.
Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia.
No sample metadata fields
View SamplesScnn1b-Tg mice overexpress the beta subunit of the epithelial sodium channel (Scnn1b) in airway Club cells. The general phenotype of these mice is described in three published manuscripts (Mall et al. 2004, Nature Medicine, 10(5):487-93; Mall et al. 2008, Am J Respir Crit Care Med. 177(7):730-42; Livraghi-Butrico et al. 2012, Physiol. Genomics 44(8):470-84; and Livraghi-Butrico et al. 2012, Mucosal Immunology 5(4):397-408). Briefly, overexpression of the Scnn1b transgene in airway Club cells leads to hyperabsorption of sodium from the airway surface liquid, which causes airway surface liquid and mucus dehydration, resulting in reduced mucus clearance and airway mucus obstruction. The data provided here represents mRNA expression data from dissected whole trachea (distal and proximal ends were cut 3-4 cartilage rings below the larynx and just above the bifurcation, respectively) from male WT and Scnn1b-Tg littermates (C57Bl/6N Tac background) at 4 time points [postnatal days (PND) 0, 3, 10, and 42]. Histologically, PND 0 trachea are normal, a tracheal mucus plug/obstruction develops around PND 3 and typically recedes to the intrapulmonary airways after PND 10, and the trachea is again histologically normal by PND 42. The data from the WT mice provides a global look at mRNA post-natal developmental changes, while the data from the Scnn1b-Tg line provides mRNA data that allows differential gene expression due to airway mucus obstruction to be queried.
Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration.
No sample metadata fields
View SamplesScnn1b-Tg mice overexpress the beta subunit of the epithelial sodium channel (Scnn1b) in airway Club cells. The general phenotype of these mice is described in three published manuscripts (Mall et al. 2004, Nature Medicine, 10(5):487-93; Mall et al. 2008, Am J Respir Crit Care Med. 177(7):730-42; Livraghi-Butrico et al. 2012, Physiol. Genomics 44(8):470-84; and Livraghi-Butrico et al. 2012, Mucosal Immunology 5(4):397-408). Briefly, overexpression of the Scnn1b transgene in airway Club cells leads to hyperabsorption of sodium from the airway surface liquid, which causes airway surface liquid and mucus dehydration, resulting in reduced mucus clearance and airway mucus obstruction. The data provided here represents mRNA expression data from disseccted whole lung from male WT and Scnn1b-transgenic littermates (C57Bl/6NTac background) at 4 time points [postnatal days (PND) 0, 3, 10, and 42]. Histologically, PND 0 lungs are normal, at PND 3 the intrapulmonary airways exhibit transient and spotty Club cell necrosis, and by PND 10 airway mucus obstruction is evident in the proximal portion of the intrapulmonary main stem bronchus. At PND 42, Scnn1b-Tg lungs are charactyerized by chronic low level inflammation, with activated macrophages, neutrophilia, eosinophilia and increased incidence of bronchus-associated lymphoid tissue. The data from the WT mice provides a global look at mRNA post-natal developmental changes, while the data from the Scnn1b-transgenic line allows differential gene expression due to airway surface liquid dehydration and mucus obstruction to be queried.
Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration.
No sample metadata fields
View SamplesThe Tec-family kinase Itk plays an important role during T-cell activation and function, and controls also conventional versus innate-like T-cell development. We have characterized the transcriptome of Itk-deficient CD3+ T-cells, including CD4+ and CD8+ subsets, using Affymetrix microarrays. The largest difference between Itk-/- and Wt CD3+ T-cells was found in unstimulated cells, e.g. for killer cell lectin-like receptors. Compared to anti-CD3-stimulation, anti-CD3/CD28 significantly decreased the number of transcripts suggesting that the CD28 co-stimulatory pathway is mainly independent of Itk. The signatures of CD4+ and CD8+ T-cell subsets identified a greater differential expression than in total CD3+ cells. Cyclosporin (CsA)-treatment had a stronger effect on transcriptional regulation than Itk-deficiency, suggesting that only a fraction of TCR-mediated calcineurin/NFAT-activation is dependent on Itk. Bioinformatic analysis of NFAT-sites of the group of transcripts similarly regulated by Itk-deficiency and CsA-treatment, followed by chromatin-immunoprecipitation, revealed NFATc1-binding to the Bub1, IL7R, Ctla2a, Ctla2b, and Schlafen1 genes. Finally, to identify transcripts that are regulated by Tec-family kinases in general, we compared the expression profile of Itk-deficient T-cells with that of Btk-deficient B-cells and a common set of transcripts was found. Taken together, our study provides a general overview about the global transcriptional changes in the absence of Itk.
Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells.
No sample metadata fields
View Samples