This SuperSeries is composed of the SubSeries listed below.
Effects of Electronic Cigarette Constituents on the Human Lung: A Pilot Clinical Trial.
Age, Specimen part
View SamplesE-cig use is continuing to increase, particularly among youth never-smokers, and is used by some smokers to quit. The acute and chronic toxicity of e-cig use is unclear generally in the context of increasing reports of inflammatory-type pneumonia in some e-cig users. To assess lung effects of e-cigs without nicotine or flavors, we conducted a pilot study with serial bronchoscopies over 4 weeks in 30 never-smokers, randomized either to a four-week intervention with the use of e-cigs containing only 50% propylene glycol (PG) and 50% vegetable glycerine (VG) or to a no-use control group. Compliance to the e-cig intervention was assessed by participants sending daily puff counts and by urinary propylene glycol (PG). Inflammatory cell counts and cytokines were determined in bronchoalveolar lavage (BAL) fluids. Genome-wide expression, microRNA, and mRNA were determined from bronchial epithelial cells. There were no significant differences in changes of BAL inflammatory cell counts or cytokines between baseline and follow-up, comparing the control and e-cig groups. However, in the intervention but not the control group, change in urinary PG as a marker of e-cig use and inhalation, was significantly correlated with change in cell counts (cell concentrations, macrophages, and lymphocytes) and cytokines (IL-8, IL-13, and TNF-α), although the absolute magnitude of changes was small. There were no significant changes in mRNA or microRNA gene expression. Although limited by study size and duration, this is the first experimental demonstration of an impact of e-cig use on inflammation in the human lung among never-smokers.
Effects of Electronic Cigarette Constituents on the Human Lung: A Pilot Clinical Trial.
Age, Specimen part
View SamplesDespite known age-related DNA methylation (aDNAm) changes in breast tumors, little is known about aDNAm in normal breast tissues. Breast tissues from a cross-sectional study of 121 cancer-free women, were assayed for genome-wide DNA methylation. mRNA expression was assayed by microarray technology. Analysis of covariance was used to identify aDNAms. Altered methylation was correlated with expression of the corresponding gene and with DNA methyltransferase protein DNMT3A, assayed by immunohistochemistry. Publically-available TCGA data were used for replication. 1,214 aDNAms were identified; 97% with increased methylation, and all on autosomes. Sites with increased methylation were predominantly in CpG lslands and non-enhancers. aDNAms with decreased methylation were generally located in intergenic regions, non-CpG Islands, and enhancers. Of the aDNAms identified, 650 are known to be involved in cancer, including ESR1 and beta-estradiol responsive genes. Expression of DNMT3A was positively associated with age. Two aDNAms showed significant associations with DNMT3A expression; KRR1 (OR 6.57, 95% CI: 2.51-17.23) and DHRS12 (OR 6.08, 95% CI: 2.33-15.86). A subset of aDNAms co-localized within vulnerable regions for somatic mutations in breast cancer. Expression of C19orf48 was inversely and significantly correlated with its methylation level. In the TCGA dataset, 84% and 64% of the previously identified aDNAms were correlated with age in both normal-adjacent and tumor breast tissues, with differential associations by histological subtype. Given the similarity of findings in the breast tissues of healthy women and breast tumors, and the effects on gene expression, aDNAms may be one pathway for increased breast cancer risk with age.
Landscape of genome-wide age-related DNA methylation in breast tissue.
Age, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Age, Specimen part, Cell line, Race, Time
View SamplesThe Pml gene is essential to the formation of PML nuclear bodies, domains which have been associated with various functions such as apoptosis/senescence, DNA repair and cell proliferation( Lallemand-Breitenbach 2010). PML-NBs formation is regulated by cellular stress including oxidative stress(Jeanne 2010, de The 2012). To investigate the role of PML in ROS response in vivo, we analyse the expression difference to the acetaminophen toxicity, which is initiated by ROS, in Pml wt and Pml KO mice.
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Age, Specimen part
View SamplesThe Pml gene is essential to the formation of PML nuclear bodies, domains which have been associated with various functions such as apoptosis/senescence, DNA repair and cell proliferation( Lallemand-Breitenbach 2010). PML-NBs formation is regulated by cellular stress including oxidative stress(Jeanne 2010, de The 2012). To investigate the role of PML in ROS response in vivo, we analyse the expression difference betweem Pml wt and Pml KO under fasted condition, which easily up-regulate ROS in BALB/cByJ background
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Age, Specimen part
View SamplesPML nuclear bodies (NBs) recruit partner proteins -including p53 and its regulators- controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB-biogenesis. Yet, physiological links between PML and oxidative stress response in vivo remain unexplored. Here we identify PML as a reactive oxygen species (ROS) sensor. Pml-/- cells accumulate ROS, while PML expression decreases ROS levels. Unexpectedly, Pml-/- embryos survive acute glutathione depletion. Moreover, Pml-/- animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml-/- animals fail to properly activate oxidative stress-responsive p53 targets, while NRF2 response is accelerated. Finally, in an oxidative stress-prone background, Pml-/- animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal anti-oxidant properties, but also drives oxidative stress-induced changes in cell survival/proliferation or metabolism in vivo. Through NB-biogenesis, PML therefore couples ROS-sensing to p53 responses, shedding a new light on PML role in senescence or stem cell biology.
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Cell line, Race, Time
View SamplesThe epithelial-mesenchymal transition (EMT) is a multistep dedifferentiation program important in tissue repair. Here, we examined the role of the transcriptional regulator NFkB in EMT of human primary small airway epithelial cells (hSAECs). Surprisingly, transforming growth factor ß (TGFß) activated NFkB/RELA proto-oncogene, NFkB subunit (RELA) translocation within 1 day of stimulation, yet induction of its downstream gene regulatory network occurred only after 3 days. A time course of TGFß-induced EMT transition was analyzed by RNA-Seq in the absence or presence of inducible shRNA-mediated silencing of RELA. In WT cells, TGFß stimulation significantly affected the expression of 2,441 genes. Gene set enrichment analysis identified Wnt, cadherin, and NFkB signaling as the most prominent TGFß-inducible pathways. By comparison, RELA controlled expression of 3,138 overlapping genes mapping to Wnt, cadherin, and chemokine signaling pathways. Conducting upstream regulator analysis, we found that RELA controls six clusters of upstream transcription factors, many of which overlapped with a transcription factor topology map of EMT developed earlier. RELA triggered expression of three key EMT pathways: (1) the Wnt/ß-catenin morphogen pathway, (2) the JUN transcription factor, and (3) the Snail family transcriptional repressor 1 (SNAI1). RELA binding to target genes was confirmed by ChIP. Experiments independently validating Wnt dependence on RELA were performed by silencing RELA via genome editing and indicated that TGFß-induced WNT5B expression and downstream activation of the Wnt target AXIN2 are RELA-dependent. We conclude that RELA is a master transcriptional regulator of EMT upstream of Wnt morphogen, JUN, SNAI1-ZEB1, and interleukin-6 autocrine loops. Overall design: RNA-seq transcriptome profiling of TGF-Beta stimulated RelA wildtype and knock-down cells
The NFκB subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells.
Specimen part, Subject
View SamplesDevelopment of systems allowing the maintenance of native properties of mesenchymal stromal cells (MSC) is a critical challenge for studying physiological functions of skeletal progenitors, as well as towards cellular therapy and regenerative medicine applications. Conventional stem cell culture in monolayer on plastic dishes (2D) is associated with progressive loss of functionality, likely due to the absence of a biomimetic microenvironment and the selection of adherent populations. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow cells within the pores of 3D scaffolds in a perfusion-based bioreactor system, followed by enzymatic digestion for cell retrieval. The 3D-perfusion system supported MSC growth while maintaining cells of the hematopoietic lineage, and thus generated a cellular environment mimicking some features of the bone marrow stroma. As compared to 2D-expansion, sorted CD45- cells derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7-8 doublings) maintained a 4.3-fold higher clonogenicity and exhibited a superior differentiation capacity towards all typical mesenchymal lineages, with similar immunomodulatory function in vitro. Transcriptomic analysis performed on MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability as well as a significant upregulation of multipotency-related gene clusters following 3D-perfusion as compared to 2D expansion. The described system offers a model to study how factors of a 3D engineered niche may regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems.
Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion.
No sample metadata fields
View SamplesThe transcription factor NF-E2-related factor 2 (Nrf2) induces cytoprotective genes, but has also been linked to the regulation of hepatic energy metabolism. In order to assess the pharmacological potential of hepatic Nrf2 activation in metabolic disease, Nrf2 was activated over 8 weeks in mice on Western diet using two different siRNAs against kelch-like ECH-associated protein 1 (Keap1), the inhibitory protein of Nrf2. Whole genome expression analysis followed by pathway analysis demonstrated that the suppression of Keap1 expression induced genes that are involved in anti-oxidative stress defense and biotransformation, pathways proving the activation of Nrf2 by the siRNAs against Keap1. The expression of neither fatty acid- nor carbohydrate-handling proteins was regulated by the suppression of Keap1. Metabolic profiling of the animals did also not show effects on plasma and hepatic lipids, energy expenditure or glucose tolerance by the activation of Nrf2. The data indicate that hepatic Nrf2 is not a major regulator of intermediary metabolism in mice.
Chronic Activation of Hepatic Nrf2 Has No Major Effect on Fatty Acid and Glucose Metabolism in Adult Mice.
Specimen part, Treatment
View Samples