The objective of this study was to determine the gene expression changes mediated by the alpha6beta4 integrin using MDA-MB-435 breast carcinoma cell line under normal culturing conditions (10% FCS in DMEM).
Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin.
No sample metadata fields
View SamplesIdentification of genes regulated by GATA-1 independent of the cofactor FOG-1.
Friend of GATA-1-independent transcriptional repression: a novel mode of GATA-1 function.
No sample metadata fields
View SamplesAlas2 gene encodes the rate-limiting enzyme in heme biosynthesis. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis-elements strongly reduced GATA-1-induced Alas2 transcription, heme biosynthesis, and GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing Alas2 function in Alas2 cis-element-mutant (double mutant) cells by providing its catalytic product 5-aminolevulinic acid (5-ALA) rescued heme biosynthesis and the GATA-1-dependent genetic network. We discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. Overall design: G1E-ER-GATA-1 WT and double mutant cells were examined. Untreated WT, beta-estradiol-treated WT, beta-estradiol-treated double-mutant, and beta-estradiol/5-ALA-treated double-mutant cells were subjected to RNA-seq.
Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation.
Treatment, Subject
View SamplesWe have analyzed publicly available K562 Hi-C data, which enables genome-wide unbiased capturing of chromatin interactions, using a Mixture Poisson Regression Model to define a highly specific set of interacting genomic regions. We integrated multiple ENCODE Consortium resources with the Hi-C data, using DNase-seq data and ChIP-seq data for 46 transcription factors and 8 histone modifications. We classified 12 different sets (clusters) of interacting loci that can be distinguished by their chromatin modifications and which can be categorized into three types of chromatin hubs. The different clusters of loci display very different relationships with transcription factor binding sites. As expected, many of the transcription factors show binding patterns specific to clusters composed of interacting loci that encompass promoters or enhancers. However, cluster 6, which is distinguished by marks of open chromatin but not by marks of active enhancers or promoters, was not bound by most transcription factors but was highly enriched for 3 transcription factors (GATA1, GATA2, and c-Jun) and 3 chromatin modifiers (BRG1, INI1, and SIRT6). To validate the identification of the clusters and to dissect the impact of chromatin organization on gene regulation, we performed RNA-seq analyses before and after knockdown of GATA1 or GATA2. We found that knockdown of the GATA factors greatly alters the expression of genes within cluster 6. Our work, in combination with previous studies linking regulation by GATA factors with c-Jun and BRG1, provide genome-wide evidence that Hi-C data identifies sets of biologically relevant interacting loci. Overall design: RNA-seq of control, siGATA1 and siGATA2 K562 cells
Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages.
Cell line, Subject
View SamplesGATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction, and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for cross-regulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2 negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis.
Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy.
Specimen part, Cell line
View SamplesTotal RNA was analyzed from either uninduced or -estradiol treated G1E-ER-GATA cells to determine changes in gene expression upon induction of erythroid maturation (treated).
Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy.
Specimen part
View SamplesMolecular mechanisms that regulate the generation of hematopoietic and endothelial cells from mesoderm are poorly understood.
GATA2 functions at multiple steps in hemangioblast development and differentiation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation.
Specimen part, Cell line
View SamplesWe compared the transcriptomes of differentiating cultures of ES cell derived erythroid progentor cells (ES-EP) and murine erythroleukemia (MEL) cells stably transfected with GATA-1 fused to ER.
A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation.
Specimen part, Cell line
View Samples-77-/- mice exhibited late embryonic lethality, anemia, and a constellation of phenotypes. -77 conferred a unique genetic network in myeloid progenitors, endowing progenitors with potential to produce diverse progeny. Overall design: E13.5 WT or -77-/- fetal liver cells were isolated and sorted for common myeloid progenitors (CMPs) defined by Lin-Sca- CD34+FcRlow, and subjected to RNA-sequencing
Cis-regulatory mechanisms governing stem and progenitor cell transitions.
No sample metadata fields
View Samples