Hypothesis: Overexpression of the GLUT1 facilitative glucose transporter, in A7r5 vascular smooth muscle cells, is sufficient and/or necessary to induce alterations in gene expression which influence apoptosis, growth, and proliferation.
GLUT1-induced cFLIP expression promotes proliferation and prevents apoptosis in vascular smooth muscle cells.
Cell line
View SamplesTreating insulin resistance with pioglitazone normalizes renal function and improves small nerve fibre function and architecture; however, it does not affect large myelinated nerve fibre function in mouse models of type 2 diabetes (T2DM), indicating that pioglitazone affects the body in a tissue-specific manner. To identify distinct molecular pathways regulating diabetic peripheral neuropathy (DPN) and nephropathy (DN), as well those affected by pioglitazone, we assessed DPN and DN gene transcript expression in control and diabetic mice with or without pioglitazone treatment. Differential expression analysis and self-organizing maps were then used in parallel to analyse transcriptome data. Differential expression analysis showed that gene expression promoting cell death and the inflammatory response was reversed in the kidney glomeruli but unchanged or exacerbated in sciatic nerve by pioglitazone. Self-organizing map analysis revealed that mitochondrial dysfunction was normalized in kidney and nerve by treatment; however, conserved pathways were opposite in their directionality of regulation. Collectively, our data suggest inflammation may drive large fibre dysfunction, while mitochondrial dysfunction may drive small fibre dysfunction in T2DM. Moreover, targeting both of these pathways is likely to improve DN. This study supports growing evidence that systemic metabolic changes in T2DM are associated with distinct tissue-specific metabolic reprogramming in kidney and nerve and that these changes play a critical role in DN and small fibre DPN pathogenesis. These data also highlight the potential dangers of a 'one size fits all' approach to T2DM therapeutics, as the same drug may simultaneously alleviate one complication while exacerbating another. PMID: 28272773 Overall design: mRNA profiles of four diabetic complication-prone tissues (sciatic nerve, dorsal root ganglia, kidney glomeruli and kidney cortex) from 16-week old BKS.Cg-m +/+ Leprdb/J mice with/without pioglitazone treatment of 15 mg/kg for 11 weeks. db/db genetic model was used for type 2 diabetes model. Deep sequencing of six biological replicates in each tissues using Illumina HiSeq 2000.
Comparative RNA-Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease.
Specimen part, Cell line, Subject
View SamplesMurine models have been valuable instruments in defining the pathogenesis of diabetic nephropathy (DN), but they only partially recapitulate disease manifestations of human DN, limiting their utility . In order to define the molecular similarities and differences between human and murine DN, we performed a cross-species comparison of glomerular transcriptional networks. Glomerular gene expression was profiled in patients with early type 2 DN and in three mouse models (streptozotocin DBA/2 mice, db/db C57BLKS, and eNOS-deficient C57BLKS db/db mice). Species-specific transcriptional networks were generated and compared with a novel network-matching algorithm. Three shared, human-mouse cross-species glomerular transcriptional networks containing 143 (Human-STZ), 97 (Human- db/db), and 162 (Human- eNOS-/- db/db) gene nodes were generated. Shared nodes across all networks reflected established pathogenic mechanisms of diabetic complications, such as elements of JAK-STAT and VEGFR signaling pathways . In addition, novel pathways not formally associated with DN and cross-species gene nodes and pathways unique to each of the human-mouse networks were discovered. The human-mouse shared glomerular transcriptional networks will assist DN researchers in the selection of mouse models most relevant to the human disease process of interest. Moreover, they will allow identification of new pathways shared between mice and humans.
Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli.
Age, Specimen part, Disease, Disease stage, Treatment
View SamplesBackground: The force generating mechanism of muscle is evolutionarily ancient; the fundamental structural and functional components of the sarcomere are common to motile animals throughout phylogeny. Recent evidence suggests that the transcription factors that regulate muscle development are also conserved. Thus, a comprehensive description of muscle gene expression in a simple model organism should define a basic muscle transcriptome that is also expressed in animals with more complex body plans. To this end, we have applied Micro-Array Profiling of Caenorhabditis elegans Cells (MAPCeL) to muscle cell populations extracted from developing Caenorhabditis elegans embryos. Results: Fluorescence Activated Cell Sorting (FACS) was used to isolate myo-3::GFP-positive muscle cells, and their cultured derivatives, from dissociated early Caenorhabditis elegans embryos. Microarray analysis identified 6,693 expressed genes, 1,305 of which are enriched in the myo-3::GFP positive cell population relative to the average embryonic cell. The muscle-enriched gene set was validated by comparisons to known muscle markers, independently derived expression data, and GFP reporters in transgenic strains. These results confirm the utility of MAPCeL for cell type-specific expression profiling and reveal that 60% of these transcripts have human homologs.
The embryonic muscle transcriptome of Caenorhabditis elegans.
No sample metadata fields
View SamplesBackground:
The embryonic muscle transcriptome of Caenorhabditis elegans.
No sample metadata fields
View SamplesResistance to proteasome inhibitors (PIs) is a ubiquitous clinical concern in multiple myeloma (MM). We proposed that signaling-level responses after PI would reveal new means to enhance efficacy. Unbiased phosphoproteomics after the PI carfilzomib surprisingly demonstrated the most prominent phosphorylation changes on spliceosome components. Spliceosome modulation was invisible to RNA or protein abundance alone. Transcriptome analysis demonstrated broad-scale intron retention suggestive of PI-specific splicing interference. Direct spliceosome inhibition synergized with carfilzomib and showed potent anti-myeloma activity. Functional genomics and exome sequencing further supported the spliceosome as a specific vulnerabilityin myeloma. Our results propose splicing interference as an unrecognized modality of PI mechanism, reveal additional modes of spliceosome modulation, and suggest spliceosome targeting as a promising therapeutic strategy in myeloma. Overall design: We examine 1) gene expression of MM cells in response to PI and 2)alternative splicing in response to PI and comparator chemotherapeutic compound. We further investigate splice factor mechanism in MM cells, by examining alternative splicing in MM with overexpression of wild type and mutant splice factor, SRSF1
Proteasome inhibitor-induced modulation reveals the spliceosome as a specific therapeutic vulnerability in multiple myeloma.
Cell line, Subject, Compound, Time
View SamplesIt is fundamentally unknown how normal cellular processes or responses to extracellular stimuli may invoke polyadenylation and degradation of ncRNA substrates or if human disease processes exhibit defects in polyadenylation of ncRNA substrates as part of their pathogenesis. Our results demonstrate that mononuclear cells from subjects with relapsing-remitting multiple sclerosis (RRMS) exhibit pervasive increases in levels of polyadenylated ncRNAs including Y1 RNA, 18S and 28S rRNA, and U1, U2, and U4 snRNAs and these defects are unique to RRMS. Defects in expression of both Ro60 and La proteins in RRMS appear to contribute to increased polyadenylation of ncRNAs. Further, IFN-ß1b, a common RRMS therapy, restores both Ro60 and La levels to normal as well as levels of polyadenylated Y1 RNA and U1 snRNA suggesting that aberrant polyadenylation of ncRNA substrates may have pathogenic consequences. Overall design: We extracted RNA from peripheral whole blood in healthy control subjects and patients with established relapsing-remitting multiple sclerosis using PaxGene tubes.
Defective structural RNA processing in relapsing-remitting multiple sclerosis.
No sample metadata fields
View SamplesTo improve our understanding of lncRNA expression in T cells, we used whole genome sequencing (RNA-seq) to identify lncRNAs expressed in human T cells and those selectively expressed in T cells differentiated under TH1, TH2, or TH17 polarizing conditions. The majority of these lineage-specific lncRNAs are co-expressed with lineage-specific protein-coding genes. These lncRNAs are predominantly intragenic with co-expressed protein-coding genes and are transcribed in sense and antisense orientations with approximately equal frequencies. Further, genes encoding TH lineage specific mRNAs are not randomly distributed across the genome but are highly enriched in the genome in genomic regions also containing genes encoding TH lineage-specific lncRNAs. Our analyses also identify a cluster of antisense lncRNAs transcribed from the RAD50 locus that are selectively expressed under TH2 polarizing conditions and co-expressed with IL4, IL5 and IL13 genes. Depletion of these lncRNAs via selective siRNA treatment demonstrates the critical requirement of these lncRNAs for expression of the TH2 cytokines, IL-4, IL-5 and IL-13. Collectively, our analyses identify new lncRNAs expressed in a TH lineage specific manner and identify a critical role for a cluster of lncRNAs for expression of genes encoding TH2 cytokines. Overall design: Human peripheral blood mononuclear cells (PBMC) were cultured under TH1, TH2, and TH17 polarizing conditions. TH1, TH2, and TH17 primary and effector cultures were isolated and poly(A)+ and total RNA sequencing performed.
Expression and functions of long noncoding RNAs during human T helper cell differentiation.
No sample metadata fields
View SamplesWe used Affymetrix DNA arrays to investigate the extent to which nuclear HDAC4 accumulation affects neuronal gene expression.
HDAC4 governs a transcriptional program essential for synaptic plasticity and memory.
Specimen part
View SamplesThe Carboxy-terminal domain (CTD) of RNA Polymerase II (RNAPII) in mammals undergoes extensive post-translational modification, which is essential for transcriptional initiation and elongation. Here, we show that the CTD of RNAPII is methylated at a single arginine (R1810) by the transcriptional co-activator CARM1. Although methylation at R1810 is present on the hyper-phosphorylated form of RNAPII in vivo, Ser-2 or Ser-5 phosphorylation inhibit CARM1 activity towards this site in vitro, suggesting that methylation occurs before transcription initiation. Mutation of R1810 results in the mis-expression of a variety of snRNAs and snoRNAs, an effect that is also observed in Carm1-/- MEFs. These results demonstrate that CTD methylation facilitates the expression of select RNAs, perhaps serving to discriminate the RNAPII-associated machinery recruited to distinct gene types. Overall design: To address the function of RNAPII methylation, we generated Raji cell lines expressing an RNA Polymerase II resistant to a-amanitin and carrying either wild-type R1810 or an arginine to alanine substitution at that same residue, abolishing R1810 methylation of the CTD. In cells cultured in a-amanitin, the a-amanitin-resistant mutants fully replaced the functions of endogenous RNAPII, allowing us to study if gene-expression is affected by the absence of R1810me
The C-terminal domain of RNA polymerase II is modified by site-specific methylation.
No sample metadata fields
View Samples