The wheat gene Lr34 (Yr18/Pm38/Sr57/Ltn1) encodes a putative ABCG-type of transporter and is a unique source of disease resistance providing durable and partial resistance against multiple fungal pathogens. Lr34 has been found to be functional as a transgene in barley.
The wheat resistance gene Lr34 results in the constitutive induction of multiple defense pathways in transgenic barley.
Specimen part
View SamplesThe mycotoxin deoxynivalenol (DON) is a secondary metabolite from Fusarium species and is frequently present on wheat and other cereals. The main effects of DON are a reduction of the feed intake and reduced weight gain of broilers. At the molecular level DON binds to the 60S ribosomal subunit and inhibits subsequently protein synthesis at the translational level. It has been suggested that cells and tissues with high protein turnover rate, like the liver and small intestine, are most affected by DON. However, little is known about other effects of DON e.g. at the transcriptional level. Therefore we decided to perform a microarray analysis, which allows us the investigation of thousands of transcripts in one experiment.
Fusarium mycotoxin-contaminated wheat containing deoxynivalenol alters the gene expression in the liver and the jejunum of broilers.
Age, Specimen part, Treatment
View SamplesPtf1a was identified as the essential transcription factor which controls pancreatic exocrine enzyme expression. With lineage tracing eperiments Ptf1a was recognized as an important pancreatic progenitor transcription factor and Ptf1a null mice do not develop a pancreas.
RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors.
Specimen part
View SamplesTime course of early development of peripheral nerve, from embryonic day 9.5 to postnatal day 0.
Efficient isolation and gene expression profiling of small numbers of neural crest stem cells and developing Schwann cells.
No sample metadata fields
View SamplesRegulation of mRNA stability by RNA-protein interactions contributes significantly to quantitative aspects of gene expression. We have identified potential mRNA targets of the AU-rich element binding protein AUF1. Myc-tagged AUF1 p42 was induced in mouse NIH-3T3 cells and RNA-protein complexes isolated using anti-myc tag antibody beads. Bound mRNAs were analyzed with Affymetrix microarrays. We have identified 508 potential target mRNAs that were at least 3-fold enriched compared to control cells without myc-AUF1. 22.3% of the enriched mRNAs had an AU-rich cluster in the ARED Organism database, against 16.3% of non-enriched control mRNAs. The enrichment towards AU-rich elements was also visible by AREScore with an average value of 5.2 in the enriched mRNAs versus 4.2 in the control group. Yet, many mRNAs were enriched without a high ARE score suggesting that AUF1 has a broader binding spectrum than standard AUUUA repeats. AUF1 did not preferentially bind to unstable mRNAs. Still, some enriched mRNAs were highly unstable, as those of TNFSF11 (known as RANKL), KLF10, HES1, CCNT2, SMAD6, and BCL6. We have mapped some of the instability determinants. HES1 mRNA appeared to have a coding region determinant. Detailed analysis of the RANKL and BCL6 3UTR revealed for both that full instability required two elements, which are conserved in evolution. In RANKL mRNA both elements are AU-rich and separated by 30 bases, while in BCL6 mRNA one is AU-rich and 60 bases from a non AU-rich element that potentially forms a stem-loop structure.
Short-lived AUF1 p42-binding mRNAs of RANKL and BCL6 have two distinct instability elements each.
Cell line
View SamplesClinical symptoms of dengue virus (DENV) infection, the most prevalent arthropod-borne viral disease, range from classical mild dengue fever to severe, life-threatening dengue shock syndrome. However, most DENV infections cause few or no symptoms. Asymptomatic DENV-infected patients provide a unique opportunity to decipher the host immune responses leading to virus elimination without negative impact on an individuals health. We used an integrated approach of transcriptional profiling and immunological analysis to compare a Cambodian population of strictly asymptomatic viremic individuals with clinical dengue patients. Whereas inflammatory pathways and innate immune response pathways were similar between asymptomatic individuals and clinical dengue patients, expression of proteins related to antigen presentation and subsequent T and B cell activation pathways were differentially regulated, independent of viral load and previous DENV infection history. Feedback mechanisms controlled the immune response in asymptomatic viremic individuals, as demonstrated by increased activation of T cell apoptosis-related pathways and FcRIIB signaling associated with decreased anti-DENV specific antibody concentrations. Taken together, our data illustrate that symptom-free DENV infection in children is associated with determined by increased activation of the adaptive immune compartment and proper control mechanisms, leading to elimination of viral infection without excessive immune activation, with implications for novel vaccine development strategies
Increased adaptive immune responses and proper feedback regulation protect against clinical dengue.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesEstrogens and progesterone control mammary gland development and breast carcinogenesis via their cognate receptors expressed in a subset of cells of the luminal layer of the mammary epithelium. The extracellular matrix (ECM) including the basement membrane (BM) is important in breast physiology and tumorigenesis but how epithelial hormone receptor signaling and ECM are linked mechanistically is unclear. We identify the secreted protease Adamts18 as critical intermediary. Luminal estrogen and progesterone receptor signaling via upregulation of Wnt4 expression and ensuing canonical Wnt signaling activation in basal cells control Adamts18 expression there. The protease has an epithelial-intrinsic role in stem cell activation. We identify multiple binding partners in the interstitial ECM and BM and show that ADAMTS18 cleaves fibronectin in vitro. Its deletion results in increased fibronectin, collagen I and IV, and laminin deposition in pubertal glands. Adamts18 interacts genetically with Col18a1, which encodes a proteoglycan that is BM-specific, in stem cell regulation. Adamts18 inactivation impairs Hippo signaling and reduces Fgfr2 expression and signaling, which are vital for stem cell function. Our findings link epithelial hormone signaling to BM remodeling by Adamts18, and define the BM as an essential stem cell niche component.
The secreted protease Adamts18 links hormone action to activation of the mammary stem cell niche.
No sample metadata fields
View SamplesDiffuse large B-cell lymphoma (DLBCL) represents the most common form of lymphoma. We could show that in DLBCL cell lines the transcription factor NFAT is constitutively activated and drives the survival of a DLBCL subset. Aim of the analysis was to identify NFAT target genes in a NFAT-dependent (HBL-1) or -independent (HT) DLBCL cell line. To block NFAT activity, the DLBCL cells were treated with the calcineurin inhibitor cyclosporin A (CsA) up to 48 h. With this approach, we identified several survival-related NFAT target genes in HBL-1 cells that might explain the toxic effects of calcineurin inhibitors.
Targeting chronic NFAT activation with calcineurin inhibitors in diffuse large B-cell lymphoma.
Treatment
View SamplesRNA-seq profiling was conducted on clinically-annotated human pancreatic adenocarcinoma cancer tissues Overall design: We measured the transcriptome in 51 clinically-annotated human pancreatic adenocarcinoma cancer tissues
RNA sequencing of pancreatic adenocarcinoma tumors yields novel expression patterns associated with long-term survival and reveals a role for ANGPTL4.
Age, Subject
View SamplesMyelodysplastic syndromes and chronic myelomonocytic leukemia (CMML) are characterized by mutations in epigenetic modifiers and aberrant DNA methylation. DNA methyltransferase inhibitors (DMTis) are used to treat these disorders, but response is highly variable with few means to predict which patients will benefit. To develop a molecular means of predicting response at diagnosis, we examined baseline differences in mutations, DNA methylation, and gene expression in 40 CMML patients responsive and resistant to decitabine (DAC). While somatic mutations did not differentiate responders and non-responders, we were able to identify for the first time 158 differentially methylated regions (DMRs) at baseline between responders and non-responders using next-generation sequencing. These DMRs were primarily localized to non-promoter regions and overlapped with distal regulatory enhancers. Using the methylation profiles, we developed an epigenetic classifier that accurately predicted DAC response at the time of diagnosis. We also found 53 differentially expressed genes between responders and non-responders. Genes up-regulated in responders were enriched in the cell cycle, potentially contributing to effective DAC incorporation. Two chemokines overexpressed in non-responders -- CXCL4 and CXCL7 -- were able to block the effect of DAC on normal CD34+ and primary CMML cells in vitro, suggesting their up-regulation contributes to primary DAC resistance. Overall design: mRNA profiling in bone marrow mononuclear cells (BM MNC) from 14 CMML patients (8 decitabine responders vs. 6 non-responders).
Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia.
No sample metadata fields
View Samples