Distinct processes govern the transition from myometrial quiescence to activation during both term and preterm labor. We sought the specific gene sets responsible for initiating term and preterm labor, along with a core set of effector genes necessary for labor independent of gestational age and the underlying trigger. The Effector Gene Set consisted of 49 genes present in both preterm and term labor but absent from non-labor samples. 122 genes were specific to preterm labor (Preterm Initiator Set) and 229 to term labor (Term Initiator Set). The Term Initiator and the Effector Sets reflected predominantly inflammatory processes. Surprisingly, the Preterm Initiator Gene Set reflected molecular and biological events almost exclusive of inflammation. Preterm and term labor differ dramatically in their unique, initiator gene profiles, suggesting alternative pathways underlie these events. Inflammatory processes are ubiquitous to the Term Initiator and the Effector Gene Sets, supporting the idea term parturition is an inflammatory process. The absence of inflammatory processes in the Preterm Initiator Set suggests inflammation is secondary to processes triggering spontaneous preterm birth, and could explain the lack of therapeutic efficacy associated with anti inflammatory/antibiotic regimens.
Human effector/initiator gene sets that regulate myometrial contractility during term and preterm labor.
Specimen part
View SamplesWe used high throughput sequencing to analyze the transcriptional profiling of EVT. By comparing the transcriptional profiling of EVT with or without H19 knockdown, numerous genes showed significantly altered expression as a result of H19 repression. Overall design: HTR cells were transfected with either control siRNA or siH19. 48h later after transfection, total RNA was extracted for library preparation and RNA-seq analysis to compare trancript profiles between siCon and siH19 cells.
H19 long noncoding RNA alters trophoblast cell migration and invasion by regulating TβR3 in placentae with fetal growth restriction.
Cell line, Subject, Time
View SamplesRosacea is a common chronic inflammatory skin disease of unknown etiology. Our knowledge about an involvement of the adaptive immune system is very limited. We performed detailed transcriptome analysis, qRT-PCR, and quantitative immunohistochemistry on facial biopsies of rosacea patients, classified according to their clinical subtype. As controls, we used samples from healthy controls. Our study shows significant activation of the immune system in all subtypes of rosacea, characterizing erythematotelangiectatic rosacea (ETR) already as a disease with significant influx of proinflammatory cells. The T cell response is dominated by Th1/Th17-polarized immune cells, as demonstrated by significant upregulation of IFN or IL-17, for example. Chemokine expression patterns support a Th1/Th17 polarization profile of the T cell response. Macrophages and mast cells are increased in all three subtypes of rosacea, while neutrophils reach a maximum in papulopustular rosacea. Our studies also provide evidence for activation of plasma cells with significant antibody production already in ETR, followed by a crescendo pattern towards phymatous rosacea. In sum, Th1/Th17 polarized inflammation and macrophage infiltration is an underestimated hallmark in all subtypes of rosacea. Therapies directly targeting the Th1/Th17 pathway are promising candidates in the future treatment of this skin disease.
Molecular and Morphological Characterization of Inflammatory Infiltrate in Rosacea Reveals Activation of Th1/Th17 Pathways.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL.
Specimen part, Disease, Disease stage, Time
View SamplesThe purpose of this study was the principal investigation and frequency of RTK expression in primary T-ALLs. Primary initial T-ALLs were assessed regarding their transcriptome-wide expression profiles and screend for prominent RTK expression.
Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL.
Disease, Disease stage
View SamplesDeregulated RTK activity has been implicated as a causal leukemogenic factor in the context of molecular aberrations that perturb differentiation in the hematopoietic lineage such as in childhood ALL. A deeper understanding of RTK signaling processes on a system-wide scale will be key in defining critical components of signaling networks. To link RTK activity with in vivo output in primary ALL we took a functional approach, which combined SH2 domain binding, mass spectrometry, and transcriptome analyses. Structure and composition of evolving networks were highly diverse with few generic features determined by receptor and cell type. A combinatorial assembly of varying context-dependent and few generic signaling components at multiple levels likely generates output specificity. PAK2 was identified as a phosphoregulated FLT3 target, whose allosteric inhibition resulted in apoptosis of ALL cells. Our studies provide evidence that a functional approach to leukemia signaling may yield valuable information for a network-directed intervention.
Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reduced chromatin binding of MYC is a key effect of HDAC inhibition in MYC amplified medulloblastoma.
Specimen part, Treatment
View SamplesMYC is a driver oncogene in many cancers. Inhibition of MYC promises high therapeutic potential, but specific MYC inhibitors remain unavailable for clinical use. Previous studies suggest that MYC amplified Medulloblastoma cells are vulnerable to HDAC inhibition. Using co-immunoprecipitation, mass spectrometry and ChIP-sequencing we show that HDAC2 is a cofactor of MYC in MYC amplified primary medulloblastoma and cell lines. The MYC-HDAC2 complex is bound to genes defining the MYC-dependent transcriptional profile. Class I HDAC inhibition leads to stabilization and reduced DNA binding of MYC protein inducing a down-regulation of MYC activated genes (MAGs) and up-regulation of MYC repressed genes (MRGs). MAGs and MRGs are characterized by opposing biological functions and distinct E-box distribution. We conclude that MYC and HDAC2 (class I) are localized in a complex in MYC amplified medulloblastoma and drive a MYC-specific transcriptional program, which is reversed by the class I HDAC inhibitor entinostat. Thus, the development of HDAC inhibitors for treatment of MYC amplified medulloblastoma should include HDAC2 in its profile in order to directly target MYC´s trans-activating and trans-repressing function.
Reduced chromatin binding of MYC is a key effect of HDAC inhibition in MYC amplified medulloblastoma.
Specimen part, Treatment
View SamplesComparison of genome-wide mRNA expresson between tumor-infiltrating CD8+ T cells from the tumor (hypofunctional T cells) and periphery (functional T cells)
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model.
Specimen part
View SamplesTranscriptomic analysis of fresh breast cancer tissue versus normal tissues. The Study comprising 45 Saudi-Arabian subjects was designed to take advantage of transcriptomics to prospectively explore the roles of lifestyle and genetic susceptibility in the occurrence of breast cancer.
Expression of matrix metalloproteinases (MMPs) in primary human breast cancer: MMP-9 as a potential biomarker for cancer invasion and metastasis.
Specimen part, Disease stage
View Samples