In the past few years, mammary cancer initiating cells (CICs) have been identified in mouse and human as a subpopulation of tumor cells that selectively posses tumor initiation and self-renewal capacity and the ability to give rise to bulk populations of non-tumorigenic cancer cells progeny through differentiation. They could also be responsible for tumor progression, metastasis, resistance to therapy and recurrence. Thus, the understanding of the pathways regulating CIC self-renewal, differentiation and tumorigenicity represents an important task in the development of effective anticancer therapies.
The noninflammatory role of high mobility group box 1/Toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells.
Specimen part, Cell line
View SamplesSeveral studies indicate that adult stem cells may improve the recovery from acute tissue injury. It has been suggested that they may contribute to tissue regeneration by the release of paracrine factors promoting proliferation of tissue resident cells. However, the factors involved remain unknown. In the present study we found that microvesicles (MV) derived from human liver stem cells (HLSC) were able to stimulate in vitro proliferation and apoptosis resistance of human and rat hepatocytes. These effects required internalization of MV in the hepatocytes by an alpha4 integrin-dependent mechanism. However, when treated with RNase, MV despites their internalization were unable to induce hepatocyte proliferation and apoptosis resistance, suggesting an RNA dependent effect. Microarray analysis and quantitative RT-PCR demonstrated that MV were shuttling a specific subset of cellular mRNA, such as mRNA associated in the control of transcription, translation, proliferation and apoptosis. When administered in vivo, MV were found to accelerate the morphological and functional recovery of liver in a model of 70% hepatectomy in rats by inducing an hepatocytes proliferation that was abolished by RNase treatment. Using human AGO2 gene, which is shuttled by MV, as a reporter gene, we found the expression of human AGO2 mRNA and protein in the liver of hepatectomized rats treated with MV. This suggest a translation of the MV shuttled mRNA within hepatocytes of treated rats. Conclusion: these results suggest that MV derived from HLSC may activate a proliferative program in remnant hepatocytes after hepatectomy by a horizontal transfer of specific mRNA subsets.
Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats.
Specimen part
View SamplesPIWI-interacting RNAs (piRNAs) are a novel class of small ncRNAs initially isolated from germ line cells; although recent studies report that they are expressed also in somatic cells. To elucidate the role of piRNAs in somatic cells, in particular from breast cancer, we performed the first extensive next generation sequencing expression analysis of small RNA transcriptomes of hormone responsive breast cancer cell lines in different culture conditions. In addition, to understand the behavior of piRNAs with respect to miRNAs in breast tumor tissues, small RNA sequence data set available in Gene Expression Omnibus (GSE39162) database was used. Results led to the identification of ~100 and ~150 human piRNAs in the breast cancerous cell lines and tumors respectively, several of which differentially expressed in cell lines under different experimental conditions tested or in response to ERß and in tumor tissues. Western blotting and Q-PCR analysis also revealed the presence in breast cell lines of PIWIL (PIWI Like) subfamily members proteins encoded in the human genome (PIWIL2/HILI and PIWIL4/HIWI2) and of other components of the piRNA biogenesis pathways, suggesting that this might indeed be functional in somatic cells. These results show that piRNAs are expressed in human somatic cells, in particular in cancer, where their expression is influenced by neoplastic transformation, growth conditions and estrogen receptor beta. More important, we demonstrate for the first time a distinct pattern of piRNAs expression in cancerous vs normal breast tissues, which suggests a potential role of these epigenetic modulators in mammary carcinogenesis and maintenance of the cancer cell phenotype. Overall design: In addition, to understand the behavior of piRNAs with respect to miRNAs in breast tumor tissues, small RNA sequence data set available in Gene Expression Omnibus (GEO; GSM957192 TAX577740T ,GSM957194 TAX577740N, GSM957195 TAX577453T, GSM957197 TAX577453N, GSM957198 TAX577745T, GSM957200 TAX577745N, GSM957201 TAX577579T, GSM957203 TAX577579N) was used.
RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer.
No sample metadata fields
View SamplesGut microbes elicit specific changes in gene expression in the colon of mice. We colonized germ-free mice with microbial communities from the guts of humans, zebrafish and termites, human skin and tongue, soil and estuarine microbial mats.
Bacteria from diverse habitats colonize and compete in the mouse gut.
Sex, Specimen part
View SamplesThe goal of the study was to identify transcriptional correlates of SLE disease activity both at the cohort and at the individual levels. To do so, we longitudinally profiled the whole blood transcriptomes of 158 SLE patients by microarray for up to 4 years, yielding 924 SLE samples and 48 matched pediatric healthy samples. The transcriptional data are complemented by demographic, laboratory and clinical data.
Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients.
Sex, Age, Specimen part, Disease, Disease stage, Treatment, Race, Subject
View SamplesSV40 large T antigen (TAg) contributes to cell transformation, in part, by targeting two well characterized tumor suppressors, pRb and p53. TAg expression affects the transcriptional circuits controlled by Rb and by p53. We have performed a microarray analysis to examine the global change in gene expression induced by wild-type TAg and TAg-mutants, in an effort to link changes in gene expression to specific transforming functions. For this analysis we have used MEFs expressing TAg or infected by SV40. Our analysis indicates that TAg can induce interferon-stimulated genes in MEFs and that this induction depends upon the LXCXE motif and p53 binding.
Induction of interferon-stimulated genes by Simian virus 40 T antigens.
No sample metadata fields
View SamplesThe premature aging disorder Werner Syndrome (WS) is characterized by early onset of aging phenotypes resembling natural aging. In most WS patients there are mutations in the DNA helicase WRN, an enzyme important in maintaining genome stability and telomere replication. Interestingly, its clinical manifestations reflect a severe degree of deterioration for connective tissue, whereas the central nervous system is less affected. We suggest that the varied vulnerability to aging is regulated by an unknown mechanism that protects specific lineages of stem cells from premature senescence. To address this problem, we reprogrammed patient skin fibroblasts to induced pluripotent stem cells (iPSC). The expression profile for the differentiated normal and WS fibroblasts and undifferentiated iPSC were compared. A distinct expression profile was found between normal and WS fibroblasts, however, few changes of gene expression were found in iPSC. Our findings suggest an erasure of aging phenotype associated with WS in reprogrammed iPSC.
Telomerase protects werner syndrome lineage-specific stem cells from premature aging.
Sex, Age, Specimen part
View SamplesClinical symptoms of dengue virus (DENV) infection, the most prevalent arthropod-borne viral disease, range from classical mild dengue fever to severe, life-threatening dengue shock syndrome. However, most DENV infections cause few or no symptoms. Asymptomatic DENV-infected patients provide a unique opportunity to decipher the host immune responses leading to virus elimination without negative impact on an individuals health. We used an integrated approach of transcriptional profiling and immunological analysis to compare a Cambodian population of strictly asymptomatic viremic individuals with clinical dengue patients. Whereas inflammatory pathways and innate immune response pathways were similar between asymptomatic individuals and clinical dengue patients, expression of proteins related to antigen presentation and subsequent T and B cell activation pathways were differentially regulated, independent of viral load and previous DENV infection history. Feedback mechanisms controlled the immune response in asymptomatic viremic individuals, as demonstrated by increased activation of T cell apoptosis-related pathways and FcRIIB signaling associated with decreased anti-DENV specific antibody concentrations. Taken together, our data illustrate that symptom-free DENV infection in children is associated with determined by increased activation of the adaptive immune compartment and proper control mechanisms, leading to elimination of viral infection without excessive immune activation, with implications for novel vaccine development strategies
Increased adaptive immune responses and proper feedback regulation protect against clinical dengue.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesSV40 transforms cells through the action of two oncoproteins, large T antigen and small t antigen. Small t antigen targets phosphatase PP2A, while large T antigen stimulates cell proliferation and survival by action on multiple proteins, including the tumor suppressors Rb and p53. Large T antigen also binds components of the transcription initiation complex and several transcription factors. We examined global gene expression in SV40-transformed mouse embryo fibroblasts, and in enterocytes obtained from transgenic mice. SV40 transformation alters the expression of approximately 800 cellular genes in both systems. Much of this regulation is observed in both MEFs and enterocytes and is consistent with T antigen action on the Rb-E2F pathway. However, the regulation of many genes is cell-type specific, suggesting that unique signaling pathways are activated in different cell types upon transformation, and that the consequences of SV40 transformation depends on the type of cell targeted.
Cell-type specific regulation of gene expression by simian virus 40 T antigens.
No sample metadata fields
View SamplesThe objective of this study was to understand the genetic mechanisms of Vitamin-A-Deficiency (VAD)-induced arrest of spermatogonial stem-cell differentiation. Vitamin A and its derivatives (the retinoids) participate in many physiological processes including vision, cellular differentiation and reproduction. VAD affects spermatogenesis, the subject of our present study. Spermatogenesis is a highly regulated process of differentiation and complex morphologic alterations that, in the postnatal testis, leads to the formation of sperm in the seminiferous epithelium. VAD causes early cessation of spermatogenesis, characterized by degeneration of meiotic germ cells, leading to seminiferous tubules containing mostly type A spermatogonia and Sertoli cells. In this study, we investigated the molecular basis of VAD on spermatogenesis in mice. We used adult Balb/C mice fed with a Control or VAD diet for an extended period of time (8-28 weeks) and selected two time points (18 and 25 weeks) for microarray analysis.
Long-term vitamin A deficiency induces alteration of adult mouse spermatogenesis and spermatogonial differentiation: direct effect on spermatogonial gene expression and indirect effects via somatic cells.
Specimen part, Treatment
View Samples