10 day old seedlings were treated with 5uM of the cytokinin Benzyladenine(BA)or DMSO at 15min, 45min, 120min, 480min and 1440min
Expression profiling of cytokinin action in Arabidopsis.
Age, Compound, Time
View SamplesClinicians need additional metrics for predicting quality of human oocytes for IVF procedures. Human polar bodies reflect the oocyte transcript profile. Quantitation of polar body mRNAs could allow for both oocyte ranking and embryo preferences in IVF applications. The transcriptome of a polar body has never been reported, in any organism. Overall design: Eight total samples. There are 2 biological replicates of the following four conditions: pooled oocytes and their sister polar bodies and a single oocyte and its sister polar body.
The transcriptome of a human polar body accurately reflects its sibling oocyte.
Specimen part, Subject
View SamplesUntreated HIV-1 infection progresses through acute and asymptomatic stages to AIDS. While each of the three stages has well-known clinical, virologic and immunological characteristics, much less is known of the molecular mechanisms underlying each stage. Here we report lymphatic tissue microarray analyses revealing for the first time stage-specific patterns of gene expression during HIV-1 infection. We show that while there is a common set of key genes with altered expression throughout all stages, each stage has a unique gene-expression signature. The acute stage is most notably characterized by increased expression of hundreds of genes involved in immune activation, innate immune defenses (e.g.MDA-5, TLR-7 and -8, PKR, APOBEC3B, 3F, 3G), adaptive immunity, and in the pro-apoptotic Fas-Fas-L pathway. Yet, quite strikingly, the expression of nearly all acute-stage genes return to baseline levels in the asymptomatic stage, accompanying partial control of infection. In the AIDS stage, decreased expression of numerous genes involved in T cell signaling identifies genes contributing to T cell dysfunction. These common and stage-specific, gene-expression signatures provide new insights into the molecular mechanisms underlying the host response and the slow, natural course of HIV-1 infection.
Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection.
Sex, Age, Specimen part, Disease, Disease stage, Race, Subject
View SamplesPharmacogenomic identification of targets for adjuvant therapy with the topoisomerase poison camptothecin.
Pharmacogenomic identification of targets for adjuvant therapy with the topoisomerase poison camptothecin.
No sample metadata fields
View SamplesComparative analysis of cerebellar gene expression changes occurring in Sca1154Q/2Q and Sca7266Q/5Q knock-in mice
The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7.
Sex, Age
View SamplesUsing our computational method SynGeNet to evaluate genomic and transcriptomic data characterizing four major genomic subtypes of melanoma, we selected the top ranked drug combination for BRAF-mutation melanoma for subsequent validaiton. Here we present drug-induced gene expression data from the BRAF-mutant A375 melanoma cell line in response to four treatment conditions: vehicle control (DMSO), vemurafenib alone, tretinoin (ATRA) alone and vemurafenib+tretinoin combination. Overall design: Gene expression profiles of A375 melanoma cells were generated by RNAseq (Illumina HiSeq 4000) under the following treatment conditions: vehicle control (DMSO), vemurafenib, tretinoin and vemurafenib + tretinoin combination.
Synergy from gene expression and network mining (SynGeNet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes.
Specimen part, Subject
View SamplesSCA1, a fatal neurodegenerative disorder, is caused by a CAG expansion encoding a polyglutamine stretch in the protein ATXN1. We used RNA-seq to profile cerebellar RNA expression in ATXN1 mice, including lines with ataxia and progressive pathology and lines having ataxia in absence of Purkinje cell progressive pathology. Weighted Gene Coexpression Network Analysis of the cerebellar RNA-seq data revealed two gene networks that significantly correlated with disease, the Magenta (342 genes) and Light Yellow (35 genes) Modules. Features of the Magenta and Light Yellow Modules indicate they reflect distinctive pathways. The Magenta Module provides a description of suppressed transcriptional programs reflecting disease progression in Purkinje cells, while the Lt Yellow Module reflects other transcriptional programs activated in response to disease in Purkinje cells as well as other cerebellar cell types. We also found that up-regulation of cholecystokinin (Cck) blocked progression of Purkinje cell pathology and that loss of Cck function in mice lacking progressive disease enabled Purkinje cell pathology to progress to cell death. Overall design: Cerebellar mRNA expression profiles from ATXN1[82Q], ATXN1[30Q], and ATXN1[30Q]-D776 transgenic mice and wild type/FVB mice at 5 weeks, 12 weeks and 28 weeks of age ---------------------------- cuffnorm_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_genes.fpkm_tracking.txt: CuffNorm normalized values for all samples (snoRNAs and miRNAs removed) cuffdiff_week5_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_gene_exp.diff.txt: Cuffdiff comparison between samples at week 5; pairwise comparisons between ATXN1[82Q], ATXN1[30Q]D776 and FVB cuffdiff_week12_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_gene_exp.diff.txt: Cuffdiff comparison between samples at week 12; pairwise comparisons between ATXN1[82Q], ATXN1[30Q]D776 and FVB cuffdiff_week28_ATXN1.82Q_ATXN1.30Q.D776_WTFVB_gene_exp.diff.txt: Cuffdiff comparison between samples at week 28; pairwise comparisons between ATXN1[82Q], ATXN1[30Q]D776 and FVB cuffdiff_week5_vs_week12_vs_week28_ATXN1.82Q_gene_exp.diff.txt: Cuffdiff comparison between ATXN1[82Q] at week 5, week 12 and week 28 cuffdiff_week5_vs_week12_vs_week28_ATXN1.30Q.D776_gene_exp.diff.txt: Cuffdiff comparison between ATXN1[30Q]D776 at week 5, week 12 and week 28 cuffdiff_week5_vs_week12_vs_week28_FVB_gene_exp.diff.txt: Cuffdiff comparison between wt/FVB at week 5, week 12 and week 28
Cerebellar Transcriptome Profiles of ATXN1 Transgenic Mice Reveal SCA1 Disease Progression and Protection Pathways.
Age, Specimen part, Cell line, Subject
View SamplesSystemic vaccination with the attenuated virus SIVmac239-Nef provides sterilizing or partial protection to rhesus monkeys challenged with WT SIV strains, providing important opportunities to study key immunological components of a protective host response. Here we show that intravenous vaccination with SIVmac239-Nef provides two potentially crucial immunological barriers localized at mucosal surfaces that correlate with the vaccines protective effects against WT SIVmac251 vaginal challenge: 1) a conditioned and coordinated response from the mucosal epithelium that blunts the early inflammatory and chemotactic signalling cascade that aids virus propagation and expansion; 2) early on-site generation/diversification of SIV-specific Abs from ectopic germinal center-like lymphoid aggregates. This unique host response to WT SIVmac251 in the female reproductive tract of SIVmac239-Nef-vaccinated animals points to a multi-layered strategy for a protective host response during immunodeficiency virus exposurerapid induction of humroal immunity at mucosal surfaces without the deleterious inflammatory side effects tied to innate recognition of virus. This vaccine-induced host response highlights potential key protective mechanisms needed for an effective HIV vaccine
Live simian immunodeficiency virus vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cell availability.
Sex, Specimen part
View SamplesInflorescence stages 1 to 12 from mutants involved in Arabidopsis small RNA metabolism. Three biological replicates of each mutant comprising at least 9 independent plants were harvested, and the expression profiles were determined using Affymetrix ATH1 arrays. Comparisons among the sample groups allow the identification of genes regulated by small RNAs (microRNAs and siRNAs).
microRNA-directed phasing during trans-acting siRNA biogenesis in plants.
No sample metadata fields
View SamplesEpithelial Splicing Regulatory Proteins 1 and 2 (ESRP1 and ESRP2) are recently discovered epithelial-specific RNA-binding proteins that promote splicing of the epithelial variant of the FGFR2, ENAH, CD44, and CTNND1 transcripts. To catalogue a larger set of splicing events under the regulation of the ESRPs, we profiled splicing changes induced by RNA interference-mediated knockdown of ESRP1 and ESRP2 expression in a human epithelial cell line using the splicing-sensitive Affymetrix Exon ST1.0 Arrays. Analysis of the microarray data using the previously described MADS tool resulted in the identification of over a hundred candidate ESRP-regulated splicing events. We were able to independently validate 37 of these targets by RT-PCR. The ESRP-regulated events encompass all known types of alternative splicing events. Importantly, a number of these regulated splicing events occur in gene transcripts that encode proteins with well-described roles in the regulation of actin cytoskeleton organization, cell-cell adhesion, cell polarity, and cell migration. In sum, this work reveals a novel list of transcripts differentially spliced in epithelial and mesenchymal cells, implying that coordinated alternative splicing plays a critical role in determination of cell type identity.
The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events.
Specimen part, Cell line
View Samples