The transition between morula and blastocyst stage during preimplantation development represents the first differentiation event of embryogenesis. Morula cells undergo the first cellular specialization and produce two well-defined populations of cells, the trophoblast and the inner cell mass (ICM). Embryonic stem cells (ESCs) with unlimited self-renewal capacity are believed to represent the in vitro counterpart of the ICM. Both mouse and rat ESCs can be derived from the ICM cells, but their in vitro stability differs. In this study we performed a microarray analysis in which we compared the transcriptome of mouse and rat morula, blastocyst, and ICM. This cross-species comparison represents a good model for understanding the differences in derivation and cultivation of ESCs observed in the two species. In order to identify alternative regulation of important molecular mechanisms the investigation of differential gene expression between the two species was extended at the level of signaling pathways, gene families, and single selected genes of interest. Some of the genes differentially expressed between the two species are already known to be important factors in the maintenance of pluripotency in ESCs, like for example Sox2 or Stat3, or play a role in reprogramming somatic cells to pluripotency like c-Myc, Klf4 and p53 and therefore represent interesting candidates to further analyze in vitro in the rat ESCs. This is the first study investigating the gene expression changes during the transition from morula to blastocyst in the rat preimplantation development. Our data show that in the pluripotent pool of cells of the rat and mouse preimplantation embryo substantial differential regulation of genes is present, which might explain the difficulties observed for the derivation and culture of rat ESCs using mouse conditions
Cross-species genome wide expression analysis during pluripotent cell determination in mouse and rat preimplantation embryos.
Sex, Age, Specimen part
View SamplesIKKbeta is a subunit of the IkB kinase (IKK) complex required for NF-kB activation in response to pro-inflammatory signals. NF-kB regulates the expression of many genes involved in inflammation, immunity and apoptosis, and also controls cell proliferation and differentiation in different tissues; however, its function in skin physiopathology remains controversial. We here report the alterations caused by increased IKKbeta activity in basal cells of the skin of transgenic mice.
IKKbeta leads to an inflammatory skin disease resembling interface dermatitis.
Sex, Age, Specimen part
View SamplesTo investigate the importance of STAT3 in the establishment of ES cells we have in a first step derived stable pluripotent embryonic stem cells from transgenic FVB mice expressing a conditional tamoxifen dependent STAT3-MER fusion protein. In a second step, STAT3-MER overexpressing cells were used to identify STAT3 pathway-related genes by expression profiling in order to identify new key-players involved in maintenance of pluripotency in ES cells.
Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3.
No sample metadata fields
View SamplesBackground and aims: The transcription factor Stat3 has been considered to promote progression and metastasis of intestinal cancers.
Stat3 is a negative regulator of intestinal tumor progression in Apc(Min) mice.
Sex, Specimen part
View SamplesFamilial Dysautonomia is a genetic disease, however patietns with the same genotype present with mild or severe forms of the disease. We used the pluripotent stem cell technology to capture the differences in disease severity in vitro during neurodevelopment as well as during maintanance of the cells, showing developmental and degenerative phenotypes. RNA seq. analysis of the groups confirmed those diffferences. Overall design: Analysis of RNA from PSC-derived neural crest cells from severe FD, mild FD and healthy patients
Capturing the biology of disease severity in a PSC-based model of familial dysautonomia.
No sample metadata fields
View SamplesWe have generated expression profiles of induced pluripotent stem cells (iPSCs) and iPSC-derived neural crest populations from Familial Dysautonomia patients. These profiles were compared to a normal iPSC line that does not harbor the IKBKAP mutation. Overall design: All cell types were differentiated from patient derived iPSCs. Bulk iPSCs were harvested for RNA and the neural crest populations were sorted on day 18 for p75/HNK1 before RNA isolation.
Capturing the biology of disease severity in a PSC-based model of familial dysautonomia.
No sample metadata fields
View SamplesERAS (Embryonic stem (ES) cell-expressed Ras) is a constitutively active member of the Ras family that is not expressed in adult tissues, and has been involved in breast cancer.
The Ras-related gene ERAS is involved in human and murine breast cancer.
Cell line
View SamplesThe purpose of our study was to identify expression signatures and molecular markers associated with tumor recurrence and survival in patients with locally advanced head and neck squamous cell carcinoma (HNSCC).
Gene expression signatures and molecular markers associated with clinical outcome in locally advanced head and neck carcinoma.
Sex, Specimen part
View SamplesCord blood stem cells were expanded and differentiated to NK cells. Samples taken at different days after induction of differentiation were analyzed and compared to undifferentiated expanded stem cells. The most highly upregulated genes were further analyzed.
The Transcription Factor ZNF683/HOBIT Regulates Human NK-Cell Development.
Specimen part, Time
View SamplesBackground and aims: Signal transducer and activator of transcription 3 (Stat3) is the main mediator of interleukin-6 type cytokine signaling required for hepatocyte proliferation and hepatoprotection but its role in sclerosing cholangitis (SC) and other cholestatic liver diseases remains unresolved. Methods: We investigated the role of Stat3 in inflammation-induced cholestatic liver injury and used mice lacking the multidrug resistance gene 2 (mdr2-/-) as a model for SC. Results: We demonstrate that conditional inactivation of stat3 in hepatocytes and cholangiocytes (stat3hc) of mdr2-/- mice strongly aggravated bile acid-induced liver injury and fibrosis. Similarly, stat3hc mice are more sensitive to cholic acid feeding than control mice. Global gene expression analysis demonstrated that hepatoprotective signals via epidermal growth factor and insulin-like growth factor 1 are affected upon loss of Stat3. Conclusions: Our data suggest that Stat3 protects cholangiocytes and hepatocytes from bile acid-induced damage thereby preventing liver fibrosis in cholestatic diseases.
Signal transducer and activator of transcription 3 protects from liver injury and fibrosis in a mouse model of sclerosing cholangitis.
Age, Specimen part
View Samples