Human and mouse embryonic stem cells (ESCs) are derived from blastocyst stage embryos but have very different biological properties, and molecular analyses suggest that the pluripotent state of human ESCs isolated so far corresponds to that of mouse derived epiblast stem cells (EpiSCs). Here we rewire the identity of conventional human ESCs into a more immature state that extensively shares defining features with pluripotent mouse ESCs. This was achieved by exogenous induction of Oct4, Klf4 and Klf2 factors combined with LIF and inhibitors of glycogen synthase kinase 3 (GSK3) and mitogen-activated protein kinase (ERK) pathway. Forskolin, a protein kinase A pathway agonist that induces Klf4 and Klf2 expression, can transiently substitute for the requirement for ectopib transgene expression. In contrast to conventional human ESCs, these epigenetically converted cells have growth properties, an X chromosome activation state (XaXa), a gene expression profile, and signaling pathway dependence that are highly similar to that of mouse ESCs. Finally, the same growth conditions allow the derivation of human induced pluripotent stem (iPS) cells with similar properties as mouse iPS cells. The generation of nave human ESCs will allow the molecular dissection of a previously undefined pluripotent state in humans, and may open up new opportunities for patient-specific, disease-relevant research.
Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells.
Specimen part
View SamplesThe overexpression of transcription factors Oct4, Sox2, Klf4, and c-Myc reprograms a somatic nucleus to one that is transcriptionally and epigenetically indistinguishable from an embryonic stem (ES) cell. However, it is still unclear if transcription factors can completely convert the nucleus of a differentiated cell into that of a distantly related cell type such that it maintains complete transcriptional and epigenetic reprogramming in the absence of exogenous factor expression. To test this idea, we screened a library of doxycycline-inducible vectors encoding neural stem cell (NSC)-expressed genes and found that stable, self-maintaining NSC-like cells could be induced under defined growth conditions after transduction of transcription factors. These induced NSCs (iNSCs) were characterized in the absence of exogenous factor induction and were shown to be transcriptionally, epigenetically, and functionally similar to endogenous embryonic cortical NSCs. Importantly, iNSCs could be generated from multiple adult cell types including liver cells and B-cells with genetic rearrangements. Our results show that self-maintaining proliferative neural cells can be induced from non-ectodermal cells by expressing specific combinations of transcription factors.
Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells.
Specimen part
View SamplesThere is growing recognition that mammalian cells produce many thousands of large intergenic transcripts. However, the functional significance of these transcripts has been particularly controversial. While there are some well-characterized examples, the vast majority (>95%) show little evidence of evolutionary conservation and have been suggested to represent transcriptional noise. Here, we report a new approach to identifying large non-coding RNAs (ncRNAs) by using chromatin-state maps to discover discrete transcriptional units intervening known protein-coding loci. Our approach identified ~1600 large multi-exonic RNAs across four mouse cell types. In sharp contrast to previous collections, these large intervening ncRNAs (lincRNAs) exhibit strong purifying selection in their genomic loci, exonic sequences, and promoter regions with greater than 95% showing clear evolutionary conservation. We also developed a novel functional genomics approach that assigns putative functions to each lincRNA, revealing a diverse range of roles for lincRNAs in processes from ES pluripotency to cell proliferation. We obtained independent functional validation for the predictions for over 100 lincRNAs, using cell-based assays. In particular, we demonstrate that specific lincRNAs are transcriptionally regulated by key transcription factors in these processes such as p53, NFKB, Sox2, Oc4, and Nanog. Together, these results define a unique collection of functional lincRNAs that are highly conserved and implicated in diverse biological processes.
Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.
No sample metadata fields
View SamplesDisparate Oxidant-related Gene Expression of Human Small Airway Epithelium Compared to Autologous Alveolar Macrophages in Response to the In Vivo Oxidant Stress of Cigarette Smoking
Disparate oxidant gene expression of airway epithelium compared to alveolar macrophages in smokers.
Sex, Age
View SamplesMicroarray was used to identify differential gene expression pattern in Barrett's esophagus (BE), compared to the normal adjacent epithelia gastric cardia (GC) and normal squamous esophagus (NE)
Evidence for a functional role of epigenetically regulated midcluster HOXB genes in the development of Barrett esophagus.
Specimen part
View SamplesTo elucidate mechanisms of cancer progression, we generated inducible human neoplasia in 3-dimensionally intact epithelial tissue. Gene expression profiling of both epithelia and stroma at specific time points during tumor progression revealed sequential enrichment of genes mediating discrete biologic functions in each tissue compartment. A core cancer progression signature was distilled using the increased signaling specificity of downstream oncogene effectors and subjected to network modeling. Network topology predicted that tumor development depends upon specific ECM-interacting network hubs. Blockade of one such hub, the b1 integrin subunit, disrupted network gene expression and attenuated tumorigenesis in vivo. Thus, integrating network modeling and temporal gene expression analysis of inducible human neoplasia provides an approach to prioritize and characterize genes functioning in cancer progression.
Modeling inducible human tissue neoplasia identifies an extracellular matrix interaction network involved in cancer progression.
Specimen part
View SamplesHuntington neurodegenerative disease (HD) is associated with extensive down-regulation of neuronal genes. We show preferential down-regulation of super-enhancer-regulated neuronal function genes in the striatum of HD mice. Striatal super-enhancers display extensive H3K27 acetylation within gene bodies and drive transcription characterized by low levels of paused RNAPII. Down-regulation of gene expression is associated with diminished H3K27 acetylation and RNAPII recruitment. Striatal super-enhancers are enriched in binding motifs for Gata transcription factors, such as Gata2 regulating striatal identity genes. Thus, enhancer topography and transcription dynamics are major parameters determining the propensity of a gene to be deregulated in a neurodegenerative disease. Overall design: RNA profiles in Striatum of WT and R6/1 mice by deep sequencing using Illumina HiSeq 2000.
Altered enhancer transcription underlies Huntington's disease striatal transcriptional signature.
No sample metadata fields
View SamplesStem cell fate is governed by the integration of intrinsic and extrinsic positive and negative signals upon inherent transcriptional networks. To identify novel embryonic stem cell (ESC) regulators and assemble transcriptional networks controlling ESC fate, we performed temporal expression microarray analyses of ESCs following the initiation of commitment and integrated these data with known genome-wide transcription factor binding. Effects of forced under- or over-expression of predicted novel regulators, defined as differentially expressed genes with potential binding sites for known regulators of pluripotency, demonstrated greater than 90% correspondence with predicted function, as assessed by functional and high content assays of self-renewal. We next assembled 43 theoretical transcriptional networks in ESCs, 82% (23 out of 28 tested) of which were supported by analysis of genome-wide expression in Oct4 knockdown cells. By using this integrative approach we have, for the first time, formulated novel networks describing gene repression of key developmental regulators in undifferentiated ESCs and successfully predicted the outcomes of genetic manipulation of these networks.
Prediction and testing of novel transcriptional networks regulating embryonic stem cell self-renewal and commitment.
No sample metadata fields
View SamplesmRNA profiles of astrocytes infected with Borrelia burdorferi for 24 hours, 48 hours, and 24 hour uninfected controls were generated by deep sequencing, in triplicate, using Illumina HiSeq. Overall design: mRNA profiles of astrocytes infected with Borrelia burdorferi for 24 hours, 48 hours, and 24 hour uninfected controls were generated by deep sequencing, in triplicate, using Illumina HiSeq.
MicroRNA and mRNA Transcriptome Profiling in Primary Human Astrocytes Infected with Borrelia burgdorferi.
Specimen part, Subject, Time
View Samples