In pigs, adipose tissue is one of the principal organs involved in the regulation of lipid metabolism. It is particulary involved in the overall fatty acid synthesis with consequences in other lipid-target organs such as muscles and the liver. With this in mind, we have used massive, parallel high-throughput sequencing technologies to characterize the porcine adipose tissue transcriptome architecture in six Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition (three per group). High-throughput RNA sequencing was used to generate a whole characterization of adipose tissue (backfat) transcriptome. A total of 4,130 putative unannotated protein-coding sequences were identified in the 20% of reads which mapped in intergenic regions. Furthermore, 36% of the unmapped reads were represented by interspersed repeats, SINEs being the most abundant elements. Differential expression analyses identified 396 candidate genes among divergent animals for intramuscular fatty acid composition. Sixty-two percent of these genes (247/396) presented higher expression in the group of pigs with higher content of intramuscular SFA and MUFA, while the remaining 149 showed higher expression in the group with higher content of PUFA. Pathway analysis related these genes to biological functions and canonical pathways controlling lipid and fatty acid metabolisms. In concordance with the phenotypic classification of animals, the major metabolic pathway differentially modulated between groups was de novo lipogenesis, the group with more PUFA being the one that showed lower expression of lipogenic genes. These results will help in the identification of genetic variants at loci that affect fatty acid composition traits. The implications of these results range from the improvement of porcine meat quality traits to the application of the pig as an animal model of human metabolic diseases.
Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition.
Sex, Specimen part
View SamplesTumor relapse is associated with dismal prognosis, but responsible biological principles remain incompletely understood. To isolate and characterize relapse-inducing cells, we used genetic engineering and proliferation-sensitive dyes in patient-derived xenografts of acute lymphoblastic leukemia (ALL). We identified a rare subpopulation that resembled relapse-inducing cells with combined properties of long-term dormancy, treatment resistance, and stemness. Single-cell and bulk expression profiling revealed their similarity to primary ALL cells isolated from pediatric and adult patients at minimal residual disease (MRD). Therapeutically adverse characteristics were reversible, as resistant, dormant cells became sensitive to treatment and started proliferating when dissociated from the in vivo environment. Our data suggest that ALL patients might profit from therapeutic strategies that release MRD cells from the niche. Overall design: Gene expression profiles from two PDX ALL Samples (ALL-199 & ALL-265) were generated for either dormant (LRC) vs. dividing (non-LRC) cells or drug treated vs. non-treated cells. For single cell analysis one mouse were analyzed for each condition.
Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia.
Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers.
Cell line
View SamplesGene expression profiling of ErbB2-engineered MCF10A and WT cells in 2D and 3D culture
Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers.
Cell line
View SamplesAnalysis of the transcriptome of mouse models of prostate cancer to assemble a mouse prostate cancer interactome.
Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies.
Cell line, Treatment
View SamplesThe indisputable role of epigenetics in cancer and the fact that epigenetic alterations can be reversed have favored development of epigenetic drugs. In this study, we have design and synthesize potent novel, selective and reversible chemical probes that simultaneously inhibit the G9a and DNMTs methyltransferase activity. In vitro treatment of hematological neoplasia (Acute Myeloid Leukemia-AML, Acute Lymphoblastic Leukemia-ALL and Diffuse Large B-cell Lymphoma-DLBCL) with the lead compound CM-272, inhibited cell proliferation and promoted apoptosis, inducing interferon stimulated genes and immunogenic cell death. CM-272 significantly prolonged survival of AML, ALL and DLBCL xenogeneic models. Our results represent the discovery of first-in-class dual inhibitors of G9a/DNMTs and establish this chemical series, as a promising therapeutic tool for unmet needs in hematological tumors.
Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies.
Cell line, Treatment
View SamplesInterleukin-6 (IL-6) is an important growth factor for estrogen receptor-alpha (ER) positive breast cancer, and elevated serum IL-6 is associated with poor prognosis. We firstly demonstrated that pSTAT3 is the primary downstream IL-6 signaling pathway in ER-positive breast cancer, using ten different breast cancer cell lines. Three-dimensional cultures of these cell lines were also used to develop a 17-gene IL-6 specific gene signature that could be used to identify IL-6 driven disease. This signature included a variety of genes involved in immune cell function and migration, cell growth and apoptosis, and the tumor microenvironment. To further validate this IL-6 signature, we obtained 36 human ER-positive breast cancer tumor samples with matched serum for gene expression profiling and determination of an IL-6 pathway activation score (PAS). Patients with high IL-6 PAS were also enriched for elevated serum IL-6 (>=10 pg/ml). We then utilized a murine MCF-7 xenograft model to determine the role of IL-6 in ER-positive breast cancer and potential anti-IL-6 therapy in vivo. When IL-6 was administered in vivo, MCF-7 cells engrafted without the need for estrogen supplementation. Subsequently, we prophylactically treated mice at MCF-7 engraftment with an anti-IL-6 antibody (siltuximab), fulvestrant or combination therapy. Siltuximab alone was able to blunt MCF-7 engraftment. Similarly, when tumors were allowed to grow to 125 mm3 before treatment, siltuximab alone demonstrated tumor regressions in 90% (9/10) of tumors. Given the established role for IL-6 in ER+ breast cancer, this data demonstrates the potential for anti-IL-6 therapeutics.
Interleukin-6 is a potential therapeutic target in interleukin-6 dependent, estrogen receptor-α-positive breast cancer.
Specimen part
View SamplesCystatin D (CST5) is an inhibitor of several proteases of the cathepsin family that inhibits cell proliferation, migration and invasion of colon carcinoma cells. Some of these effects are unrelated to its antiprotease activity. Here, we use genome-wide expression microarrays to show that cystatin D regulates gene expression (including that of genes encoding transcription factors such as RUNX1, RUNX2, or MEF2C) in HCT116 cells.
Cystatin D locates in the nucleus at sites of active transcription and modulates gene and protein expression.
Specimen part, Cell line
View SamplesThere is an association between transcriptome and the exercise-related phenotype. Peripheral blood cells suffer alterations in the gene expression pattern in response to perturbations caused by exercise. The acute response to endurance activates stress and inflammation, as well as growth and tissue repair responses.
PBMCs express a transcriptome signature predictor of oxygen uptake responsiveness to endurance exercise training in men.
Sex, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View Samples