The human EphA3 gene was discovered in a pre-B acute lymphoblastic leukemia (pre-B-ALL) using the EphA3-specific monoclonal antibody (mAb), IIIA4, which binds and activates both human and mouse EphA3. We use two models of human pre-B-ALL to examine EphA3 function, demonstrating effects on pre-B-cell receptor signaling. In therapeutic targeting studies, we demonstrated antitumor effects of the IIIA4 mAb in EphA3-expressing leukemic xenografts and no antitumor effect in the xenografts with no EphA3 expression providing evidence that EphA3 is a functional therapeutic target in pre-B-ALL. Here we show that the therapeutic effect of the anti-EphA3 antibody was greatly enhanced by adding an -particle-emitting 213Bismuth payload.
EphA3 as a target for antibody immunotherapy in acute lymphoblastic leukemia.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Transcription Factor Tcf1 Contributes to Normal NK Cell Development and Function by Limiting the Expression of Granzymes.
Specimen part
View SamplesThe study demontrates differences in the transcriptome ( both of protein coding transcripts and long non-coding RNAs) in the unilateral ureteric obstruction model of renal fibrosis. Overall design: Renal tissue was studied from animals undergoing sham operation (as controls) or right ureteric ligation. Animals were sacrificed 2 and 8 days following ligation and the right kidney tissue was examined.
Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases.
Sex, Age, Specimen part, Cell line, Subject
View SamplesThe transcription factor Tcf1 plays an essential role for the development of NK cells, however, its precise role for NK cell development, maturation and function is poorly understood. Here we show that distinct domains of Tcf1 direct bone marrow progenitors towards the NK cell lineage and mediate lineage commitment and NK cell expansion, and that Tcf1 downregulation is required for terminal NK cell maturation. Impaired NK cell development in the absence of Tcf1 is explained by increased cell death due to excessive expression of Granzyme family proteins, which results in NK cell self-destruction. In addition, excessive Granzyme B expression leads to target cell induced NK cell death and consequently reduced target cell killing by NK cells lacking Tcf1. Mechanistically, Tcf1 prevents excessive Granzyme B expression by binding to a newly identified enhancer element upstream of the Granzyme B locus. These data identify an unexpected requirement to limit the expression of cytotoxic effector molecules for lymphocyte development.
The Transcription Factor Tcf1 Contributes to Normal NK Cell Development and Function by Limiting the Expression of Granzymes.
Specimen part
View SamplesInflammatory breast cancer (IBC) is an aggressive form of BC poorly defined at the molecular level. We compared the molecular portraits of 63 IBC and 134 non-IBC (nIBC) clinical samples. Genomic imbalances of 49 IBCs and 124 nIBCs were determined using high-resolution array-comparative genomic hybridization, and mRNA expression profiles of 197 samples using whole-genome microarrays. Genomic profiles of IBCs were as heterogeneous as those of nIBCs, and globally relatively close. However, IBCs showed more frequent complex patterns and a higher percentage of genes with CNAs per sample. The number of altered regions was similar in both types, although some regions were altered more frequently and/or with higher amplitude in IBCs. Many genes were similarly altered in both types; however, more genes displayed recurrent amplifications in IBCs.
High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes.
Age
View SamplesAnalysis of the response to arginine of the Escherichia coli K-12 transcriptome by microarray hybridization and real-time quantitative PCR provides a first coherent quantitative picture of the ArgR-mediated repression of arginine biosynthesis and uptake genes. Transcriptional repression was shown to be the major control mechanism of the biosynthetic genes, leaving only limited room for additional transcriptional or post-transcriptional regulations. The art genes coding for the specific arginine uptake system are subject to ArgR-mediated repression,
The arginine regulon of Escherichia coli: whole-system transcriptome analysis discovers new genes and provides an integrated view of arginine regulation.
No sample metadata fields
View SamplesChronic obstructive pulmonary disease is a smoking-related disease that lacks effective therapies due partly to the poor understanding of disease pathogenesis. The aim of this study was to identify molecular pathways which could be responsible for the damaging consequences of smoking. To do this, we employed recently described bioinformatic methods to analyze differences in global gene expression, which we then related to the pathological changes induced by cigarette smoke (CS). Sprague-Dawley rats were exposed to whole-body CS for 1 day and for various periods up to 8 months.
Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation.
Sex, Specimen part
View SamplesScreening small molecules and drugs for activity to modulate alternative splicing, we found that amiloride, distinct from four other intracellular pH-affecting analogues, could normalize the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts in human hepatocellular carcinoma Huh-7 cells. To elucidate the underlying mechanisms, our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF and also decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, while increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulated kinases and up-regulated phosphatases in the signal pathways known to affect the splicing factor protein phosphorylation. The amiloride effects of splicing factor protein hypo-phosphorylation andnormalizedoncogenic RNA splicing were both abrogated by pre-treatment with a PP1 inhibitor. We then performed global exon array analysis of Huh-7 cells treated with amiloride for 24 hours. Using gene array chips (Affymetrix GeneChip Human Exon 1.0 ST Array of >518000 exons of 42974 genes) for exon array analysis (set parameters of correlation coefficient 0.7, splicing index -1.585 , and log2 ratio -1.585), we found that amiloride influenced the splicing patterns of 551 genes involving at least 584 exons, which included 495 known protein-coding genes involving 526 exons, many of which play key roles in functional networks of ion transport, extracellular matrix, cytoskeletons and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of abnormal RNA splicing for cancer therapeutics.
Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells.
Cell line
View SamplesNotch receptors direct the differentiation of T helper (Th) cell subsets, but their influence on regulatory T (TR) cell responses is obscure. Interruption of Notch signaling in TR cells resulted in a super-regulatory phenotype, with suppression of TR cell Th1 programming and apoptosis as well as Th1 cell responses in systemic inflammation. In contrast, gain of function Notch1 signaling in TR cells resulted in lymphoproliferation, dysregulated Th1 responses and autoimmunity. To determine mechanisms by which Notch signaling may alter TR cell function, we compared the transcriptional profiles of splenic TR cells of Foxp3EGFPCre mice with those of Foxp3EGFPCreR26N1c/N1c (gain of function Notch signaling), Foxp3EGFPCreRBPJ/ (loss of function canonical Notch signaling), and Foxp3EGFPCreR26N1c/N1cRBPJ/ mice (gain of function/canonical loss of function Notch signaling).
Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling.
Sex, Age, Specimen part
View SamplesMechanisms by which regulatory T (Treg) cells fail to control inflammation in asthma remain poorly understood. We show that a severe asthma-associated polymorphism in the interleukin-4 receptor alpha chain (IL-4Ra-R576) biases induced Treg (iTreg) cells towards a T helper 17 (TH17) cell fate. This skewing reflects the recruitment by IL-4Ra-R576 of the adaptor protein growth factor receptor-bound protein 2 (GRB2), which drives IL-17 expression by an extracellular signal-regulated kinase-, IL-6- and STAT3-dependent mechanism. We showed that the IL-4Ra-R576 mutation elicits TH17 airway responses in vivo, in a house dust mite (HDM)- or ovalbumin (OVA)-driven model of airway inflammation in the mice carry the IL-4Ra-R576 mutation (Il4raR576 mice). Treg cell-specific deletion of genes encoding IL-6Ra or the master TH17 cell regulator Retinoid-related Orphan Receptor ?t (ROR?t), but not IL-4 and IL-13, protected mice against exacerbated airway inflammation induced by IL-4Ra--576. Analysis of lung tissue Treg cells revealed that the expression of IL-17 and the TH17 cell-associated chemokine receptor CCR6 was largely overlapping and highly enriched in Treg and conventional T (Tconv) cells of allergen-treated Il4raR576 mice. To further characterize the subset of IL-17 producing Foxp3+ Treg in the lung of OVA-treated mice we utilized CCR6 as a marker of Treg cells committed towards the TH17 cell lineage to examine their functional, epigenetic and transcriptional profiles. CCR6+Foxp3EGFP+ Treg cells isolated from OVA-sensitized and challenged Il4raR576 mice, by FACS (Fluorescence Activated Cell Sorting) exhibited decreased methylation of the Foxp3 CNS2 locus comparing to CCR6–Foxp3EGFP+ Treg cells from same animals, indicative of decreased stability. They also exhibited profoundly decreased suppressive function as compared to CCR6– WT and CCR6– Il4raR576 counterparts. Transcriptional profiling of CCR6+Foxp3EGFP+ Treg cells revealed increased relative expression in CCR6+ Il4raR576 Treg cells of genes associated with a TH17 cell signature, including Rorc, Ccr6, Il23r, Il17a, Il17f, Il1r1, Nr1d1, Cstl, and Ahr comparing to CCR6–Foxp3EGFP+ Treg cells from same animals. Overall design: Three CCR6+Foxp3EGFP+ Il4raR576 replicates and four CCR6–Foxp3EGFP+ Il4raR576 Treg replicates (controls) were sampled
An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells.
Sex, Specimen part, Subject
View Samples