We report a multi-omic study of sex differences and gene-by-sex interactions across a panel of 100 inbred strains of mice (the Hybrid Mouse Diversity Panel, HMDP), with a focus on metabolic and cardiovascular traits. For all traits examined, including obesity, insulin resistance, fatty liver, atherosclerosis, and gut microbiota composition, sex differences were influenced by genetic background. Loci identified by genome-wide association studies (GWAS) of the traits were frequently influenced by sex. Lyplal1, a gene implicated in human obesity, was shown to underlie a sex-specific locus for diet induced obesity. Many of the sex-dependent traits showed interdependencies as judged by correlation and shared gene expression patterns, indicating higher order regulation. Global gene expression analyses of tissues across the HMDP indicated that sex differences in mitochondrial functions in adipose contributed to many of the traits. Consistent with this, we observed that females tended to be more resistant to the adverse effects of a high fat diet, with smaller adipocytes and increased “browning” of white adipose tissue as compared to males. Sex-specific differences in mitochondrial activity were confirmed by examining respiration of isolated mitochondria. Gonadectomy experiments revealed thousands of genes influenced by sex hormones. In liver, a tissue exhibiting particularly strong differences in gene expression between tissues, sex hormones appeared to be the primary driver of the differences, whereas in adipose organizational effects of sex appeared to be more important. Overall design: Sixteen male and sixteen female C57BL/6J were purchased from The Jackson Laboratory (Bar Harbor). Mice were either maintained on a chow diet (Ralston Purina Company) or placed on an HF/HS diet (Research Diets D12266B) at 8 weeks of age until 16 weeks of age. At 6 weeks of age the mice were gonadectomized under isoflurane anesthesia. Scrotal regions of male mice were bilaterally incised, testes removed, and the incisions closed with wound clips. Ovaries of female mice were removed through an incision just below the rib cage. There were four mice per group. The muscle layer was sutured, and the incision closed with wound clips. In sham-operated control mice, incisions were made and closed as described above. The gonads were briefly manipulated, but remained intact. Gonadal fat and liver samples were taken for RNASeq expression profiling.
Gene-by-Sex Interactions in Mitochondrial Functions and Cardio-Metabolic Traits.
Sex, Age, Cell line, Treatment, Subject
View SamplesDuring early development, pluripotent cells of the epiblast show extensive rewiring of enhancers with little associated change in gene expression. The mechanisms underlying and purpose of this rewiring are largely unknown. Here we identified a transcription factor, GRHL2, that is both necessary and sufficient to activate latent enhancers during the transition from naïve embryonic stem cells (ESC) to primed epiblast cells (EpiC). GRHL2 is necessary to maintain expression of its targets in EpiCs. However, these genes are already expressed at equivalent levels in ESCs, suggesting these genes switch enhancer usage during the transition. Identification of alternative enhancers driving these genes in ESCs uncovered an enrichment for the ESC-specific KLF transcription factors. While many KLF targets remain expressed in EpiCs, GRHL2 only regulates a specific subset promoting an epithelial program. These data suggest a model where a large naïve-specific transcriptional network is partitioned into smaller networks to uncouple their regulation in EpiCs, providing more flexibility in gene regulation during lineage specification. Overall design: RNA-seq in wildtype embryonic stem cells (ESCs) and wildtype epiblast-like cells (EpiLCs)
GRHL2-Dependent Enhancer Switching Maintains a Pluripotent Stem Cell Transcriptional Subnetwork after Exit from Naive Pluripotency.
Specimen part, Treatment, Subject
View SamplesObservational studies in human suggest involvement of vitamin A/retinoic acid (RA) signaling in the regulation of airway smooth muscle (ASM) function, but the precise mechanisms by which RA impacts ASM phenotype is not clear. Here, we generated trascriptional profiles from two different models of RA-sufficient and RA-deficient mouse ASM in order to determine the molecular targets of RA in ASM (VAS/VAD, CTR/BMS)
Retinoic acid signaling is essential for airway smooth muscle homeostasis.
Specimen part
View SamplesMetabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In the past decade, altered lipid metabolism has been recognized to be a property of malignant cells. In this report, we describe a novel oncogenic signaling pathway exclusively in tyrosine kinase inhibitor (TKI)-resistant epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC). EGFR mediates TKI-resistance through regulation of the fatty acid synthase (FASN), and inhibition of this pathway using the FASN inhibitor Orlistat, triggers cell death and reduces tumor sizes both in culture systems and in vivo. Together, data shown here provide compelling evidence that the fatty acid metabolism pathway is a candidate target for TKI-resistant NSCLC treatment.
Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer.
Specimen part, Cell line
View SamplesWe examined the transcriptional chagnes modulated by ECBI-11 by perfroming global transcriptome analysis. ZR75 cells were treated with either control or ECBI-11 in the presence of E2 for 48 h and the isolated RNA was utilized for RNA-seq analysis. Our results demonstrated that ECBI modulated several genes that are involved in cell cycle, breast cancer signaling, estrogen signaling and apoptosis. Overall design: Total RNA was isolated from the ZR75 cells that were treated with vehicle or ECBI for 48 h. Illumina TruSeq RNA Sample Preparation was performed following manufacturer''s protocol. Samples were run on an Illumina HiSeq 2000 in duplicate. The combined raw reads were aligned to UCSC hg19 and genes were annotated by Tophat. Genes were annotated and quantified by HTSeq-DESeq pipeline.
Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers.
No sample metadata fields
View SamplesWe used human gene expression microarray to interrogate how glutamine deprivation differentially impact gene expession in isogenic PIK3CA mutant and WT cells.
5-Fluorouracil Enhances the Antitumor Activity of the Glutaminase Inhibitor CB-839 against <i>PIK3CA</i>-Mutant Colorectal Cancers.
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesKnockdown of H19 leads to cell cycle arrest, reduced cell proliferation, and reduced cell migration in HCT116 cells.
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesWe used microarrays to detail the global programme of gene expression following CTNNB1 knockdown in HCT116 cells
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesWe used microarrays to detail the global programme of gene expression following CDK8 knockdown in HCT116 cells
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View Samples