refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2713 results
Sort by

Filters

Technology

Platform

accession-icon GSE50604
Identification and characterization of FGF2-dependent mRNA:microRNA networks during lens fiber cell differentiation
  • organism-icon Rattus norvegicus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Background: FGF signaling controls numerous processes during cell lineage specification, organogenesis and terminal differentiation. In lens, FGF signaling was implicated as the key pathway that controls lens fiber cell differentiation, but little is known about its full range and spectrum of regulated genes. Results: Herein, we employed rat lens epithelial explant system and performed RNA and microRNA expression profiling in cells induced to differentiate by FGF2. The primary data were collected at explants grown overnight in the presence of 5 ng/ml of FGF2, followed by a treatment with 100 ng/ml of FGF2 and collection of samples at 2, 4, 12 and 24 hours. Global analysis identified extensive FGF2-regulated cellular responses that were both independent and dependent on microRNAs (miRNAs). We identified a total number of 131 FGF2-regulated miRNAs. Forty-four of these microRNAs had at least two predicted and inversely regulated target RNA molecules. The genes regulated by the highest number of miRs include Nfib, Nfat5, c-Maf, Ets1 and N-Myc, all encoding DNA-binding transcription factors. Analysis of RNA data revealed that activated FGF signaling influenced other major signaling pathways known to regulate lens differentiation including BMP/TGF-, Notch, and Wnt signaling. In the early response phase (2-4 hours), miRNAs targeted expression of batteries of genes that control transcription, cell death, cell proliferation, cell junction, and protein serine/threonine kinase activity. In late stages (12-24 hours), the main miRNA targets included regulators of cell cycle arrest and cellular differentiation. Specific miRNA:mRNA interaction networks were identified for c-Maf, N-Myc, and Nfib (DNA-binding transcription factors); Cnot6, Dicer1, Fbx33 and Wdr47 (RNA processing); Ash1l, Med1/PBP and Kdm5b (chromatin remodeling); and c-Maf, Ets1 and Stc1 (FGF signaling). MicroRNAs including miR-9, -143, -155, -455 and -543 downregulated expression of c-Maf in the 3-UTR luciferase reporter asssays. The functional requirement for miRNAs in lens was further demonstrated via disrupted lens fiber cell differentiation in lenses with inactivated Dicer1. Conclusions: These studies demonstrate for the first time global impact of activated FGF signaling in lens cell culture system and identified novel gene regulatory networks (GRNs) connected by multiple miRNAs.

Publication Title

Identification and characterization of FGF2-dependent mRNA: microRNA networks during lens fiber cell differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26928
Human peripheral blood CD4+ T cell subsets
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cells were isolated from healthy human donors (n=2). Unstimulated cells. Cells were stained with CD4, CD45RA, CCR7 and CXCR7. Using flow cytometry, 4 CD4+ T cell populations were sorted: (1) Nave (CD45RA+CCR7+CXCR5-), (2) Central memory (CD45RA-CCR7+CXCR5-), (3) Effector memory (CD45RA-CCR7-CXCR5-) and (4) CXCR5+ cells (CD45RA-CCR7-CXCR5+)

Publication Title

CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66468
Opposite phenotypic effects and genetic dosage in mouse models of 16p11.2 deletion and duplication syndromes
  • organism-icon Mus musculus
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

The 16p11.2 deletion and duplication syndromes have been associated with developmental delay and autism spectrum disorders, and a reciprocal effect on body mass index. Here we explored these links with new engineered mouse models carrying a deletion (Del/+) and duplication (Dup/+) of the whole 16p11.2 homologous Sult1a1-Spn region. On a pure genetic background, compared to wild-types, Del/+ mice carrying the deletion showed weight and adipogenesis deficits, hyperactivity, repetitive behaviors, and recognition memory deficits, whereas Dup/+ mice showed the opposite phenotypes and Del/Dup individuals displayed no changes. Alterations in social interaction were also observed in Del/+ and Dup/+ animals on a mixed genetic background.

Publication Title

Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE88988
Expression data from Arabidopsis seedling
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

For establishing the photosynthetic apparatus plant cells must orchestrate the expression of genes encoded in both nucleus and chloroplast. Therefore a crosstalk between the two compartments is necessary.

Publication Title

Light and Plastid Signals Regulate Different Sets of Genes in the Albino Mutant Pap7-1.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP064981
Gut Microbiota Orchestrates Energy Homeostasis during Cold [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Microbial functions in the host physiology are a result of co-evolution between microbial communities and their hosts. Here we show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase the insulin sensitivity of the host, and enable complete tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold however, the body weight loss is attenuated, caused by adaptive mechanisms maximising caloric uptake and increasing intestinal, villi and microvilli lengths. This increased absorptive surface is promoted by the cold microbiota - effect that can be diminished by co-transplanting the most downregulated bacterial strain from the Verrucomicrobia phylum, Akkermansia muciniphila, during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand. Overall design: Mice were kept 30 days at room temperature or at 6C, 2 per cage, under SPF conditions, with or without administration of antibiotic coctail in drinking water (whole microbiota depletion). Fasted 5h before sacrifice. Segments of proximal jejunum were isoated, flushed gently with PBS and frozen. Each of 12 samples is a pool of two biological replicates (2 biological replicates of the same condition combined into one sample)

Publication Title

Gut Microbiota Orchestrates Energy Homeostasis during Cold.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE22147
microRNAs-449 control vertebrate multi-ciliogenesis by repressing Notch signalling
  • organism-icon Homo sapiens, Xenopus laevis
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19190
Distinct epithelial gene expression phenotypes in childhood respiratory allergy
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Distinct epithelial gene expression phenotypes in childhood respiratory allergy.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE19187
Nasal epithelium gene expression profiling in child respiratory allergic disease
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Background: In asthma, airway epithelium remodeling can already be detected during childhood, and epithelial cells are more susceptible to virus and oxidative stress. Their exact role in natural history and severity of children allergic respiratory disease remains however surprisingly unexplored.

Publication Title

Distinct epithelial gene expression phenotypes in childhood respiratory allergy.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE19182
Gene expression profiling of differentiated HNECs stimulated by IL4, IL13, IFNalpha, IFNbeta, IFNgamma and controls
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Background: In asthma, airway epithelium remodeling can already be detected during childhood, and epithelial cells are more susceptible to virus and oxidative stress. Their exact role in natural history and severity of children allergic respiratory disease remains however surprisingly unexplored.

Publication Title

Distinct epithelial gene expression phenotypes in childhood respiratory allergy.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE22143
Transcriptomic impact of microRNAs-449 or microRNAs-34 overexpression in proliferating human airway epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We used microarrays to detail the global programme of gene expression that occurs in response to miR-449 or miR-34 overexpression in proliferating HAECs.

Publication Title

Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact