This SuperSeries is composed of the SubSeries listed below.
Transcription of muscle actin genes by a nuclear form of mitochondrial RNA polymerase.
Sex, Age, Specimen part, Cell line
View SamplesTranscription of mRNA in mammalian is mainly performed by RNA polymerase II (PolII). POLRMT is responsible for the production of cytoplasmic and nuclear form of mitochondrial RNA polymerase. The former (mtRNAP) participates in transcription of RNA in the mitochondria while the latter (spRNAP-IV) is responsible for some mRNA transcription in the nucleus. The nature and amount of genes transcribed by spRNAP-IV still remains unclear. Thus, we scanned for possible candidate genes by using Affymetrix.
Transcription of muscle actin genes by a nuclear form of mitochondrial RNA polymerase.
Sex, Age, Specimen part, Cell line
View SamplesTranscription of mRNA in mammalian is mainly performed by RNA polymerase II (PolII). POLRMT is responsible for the production of cytoplasmic and nuclear form of mitochondrial RNA polymerase. The former (mtRNAP) participates in transcription of RNA in the mitochondria while the latter (spRNAP-IV) is responsible for some mRNA transcription in the nucleus. The nature and amount of genes transcribed by spRNAP-IV still remains unclear. Thus, we scanned for possible candidate genes by using Affymetrix.
Transcription of muscle actin genes by a nuclear form of mitochondrial RNA polymerase.
Cell line
View SamplesTranscription of mRNA in mammalian is mainly performed by RNA polymerase II (PolII). POLRMT is responsible for the production of cytoplasmic and nuclear form of mitochondrial RNA polymerase. The former (mtRNAP) participates in transcription of RNA in the mitochondria while the latter (spRNAP-IV) is responsible for some mRNA transcription in the nucleus. The nature and amount of genes transcribed by spRNAP-IV still remains unclear. Thus, we scanned for possible candidate genes by using Affymetrix.
Transcription of muscle actin genes by a nuclear form of mitochondrial RNA polymerase.
Cell line
View SamplesMAF1 represses Pol III-mediated transcription by interfering with TFIIIB and Pol III. Herein, we found that MAF1 knockdown induced CDKN1A transcription and chromatin looping concurrently with Pol III recruitment. Simultaneous knockdown of MAF1 with Pol III or BRF1 (subunit of TFIIIB) diminished the activation and looping effect, which indicates that recruiting Pol III was required for activation of Pol II-mediated transcription and chromatin looping. ChIP analysis after MAF1 knockdown indicated enhanced binding of Pol III and BRF1, as well as of CFP1, p300, and PCAF, which are factors that mediate active histone marks, along with the binding of TBP and POLR2E to the CDKN1A promoter. Simultaneous knockdown with Pol III abolished these regulatory events. Similar results were obtained for GDF15. Our results reveal a novel mechanism by which MAF1 and Pol III regulate the activity of a protein-coding gene transcribed by Pol II.
MAF1 represses CDKN1A through a Pol III-dependent mechanism.
Cell line, Treatment
View SamplesPompe disease is caused by autosomal recessive mutations in the GAA gene, which encodes acid alpha-glucosidase. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease induced pluripotent stem cells (PomD-iPSCs) and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features, and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen, abundant intracellular LAMP-1- or LC3-positive granules, and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to rhGAA reversed the major pathologic phenotypes. Further, L-carnitine and 3- methyladenine treatment reduced defective cellular respiration and buildup of phagolysosomes, respectively, in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for development of novel therapeutic strategies for Pompe disease.
Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification.
Specimen part
View SamplesWe have developed a method for mapping unmethylated sites in human genome based on the resistant of TspR1 digested ends to exoIII nuclease degradation. Digestion with TspR1 and methylation-sensitive restriction endonuclease, HpaII, followed by exoIII and single strand DNA nuclease allows the removal of DNA fragments containing unmethylated HpaII sites. We then use array CGH to map the sequences depleted by this procedures in human genomes derived from five human tissues, a primary breast tumor and two breast tumor cell lines. Analysis of methylation patterns of the normal tissue genomes indicates that the hypomethylated sites are enriched in the 5 end of widely expressed genes including promoter, first exon and first intron. In contrast, genomes of the MCF-7 and MDA-MB-231 cell lines show extensive hypomethylation in the intragenic and intergenic regions whereas primary tumor exhibits intermediate pattern between normal tissue and cell lines. A striking characteristic of tumor genomes is the presence of megabase-sized hypomethylated zones. These hypomethylated zones are associated with large genes, fragile sites, evolutionary breakpoints, chromosomal rearrangement breakpoints, tumor supperessor genes, and with regions containing tissue-specific gene clusters or with gene poor region containing novel tissue-specific genes. Bisulfite sequencing analysis shows a novel mosaic methylation pattern with alternative methylated and unmethylated zones was found in human histone gene clusters in chromosome 6. Correlation with microarray analysis show that genes with hypomethylated sequence 2kb up- or down-stream of transcription start site are highly expressed whereas genes with extensive intragenic and 3 UTR hypomethylation are silenced. The method described herein can be used for large scale screening of changes in methylation pattern in the genome of interest.
Genome-wide mapping and characterization of hypomethylated sites in human tissues and breast cancer cell lines.
Sex, Age, Specimen part, Cell line
View SamplesThis is a pilot study. We are trying to detect potential salivary biomarkers in mice with a pancreatic tumor.
Role of pancreatic cancer-derived exosomes in salivary biomarker development.
Specimen part
View SamplesThis study investigated the specific and differential gene expression in human immature DCs (iDCs) in response to treatment with a butanol fraction containing defined bioactive phytocompounds extracted from stems and leaves of Echinacea purpurea
Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells.
No sample metadata fields
View SamplesFbw7 plays a negative role in pancreatic cancer tumorigenesis and progression. To further clarify the function and mechanism that Fbw7 plays in pancreatic cancer,mRNA microarray assays were performed to identify the genes and signaling pathways that were changed upon Fbw7 overexpression.
FBW7 (F-box and WD Repeat Domain-Containing 7) Negatively Regulates Glucose Metabolism by Targeting the c-Myc/TXNIP (Thioredoxin-Binding Protein) Axis in Pancreatic Cancer.
Cell line, Treatment
View Samples