We exposed Kavya rice seedlings to different gall midge biotypes, GMB1 and GMB4M, which exhibit incompatible and compatible interactions, respectively.
A novel mechanism of gall midge resistance in the rice variety Kavya revealed by microarray analysis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms.
Specimen part, Disease, Cell line
View SamplesWe recently identified recurrent mutations of cohesin complex in myeloid neoplasms through whole-exome sequencing analysis. RAD21 is one of the main components of the cohesin complex.
Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms.
Cell line
View SamplesTET2 is an enzyme for converting methylcytosine (mC) to hydorxymethylcytosine (hmC) and its mutations have been frequently found in myeloid malignancies and T-cell lymphoma in humans. We analyzed Tet2 gene trap mice and found that homozygous mice developed T-cell lymphoma with follicular helper T-cell-like features.
Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice.
Specimen part
View SamplesThe estrogen receptor-a (ERa) is a transcription factor which plays a critical role in controlling cell proliferation and tumorigenesis by recruiting various cofactors to estrogen response elements (EREs) to induce or repress gene transcription. A deeper understanding of these transcriptional mechanisms may uncover novel therapeutic targets for ERa-dependent cancers. Here we show for the first time that BRD4 regulates ERa-induced gene expression by affecting elongation-associated phosphorylation of RNA Polymerase II (RNAPII P-Ser2) and histone H2B monoubiquitination (H2Bub1). Consistently, BRD4 activity is required for estrogen-induced proliferation of ER+ breast and endometrial cancer cells and uterine growth in mice. Genome-wide occupancy studies revealed an enrichment of BRD4 on transcriptional start sites as well as EREs enriched for H3K27ac and demonstrate a requirement for BRD4 for H2B monoubiquitination in the transcribed region of estrogen-responsive genes. Importantly, we further demonstrate that BRD4 occupancy correlates with active mRNA transcription and is required for the production of ERa-dependent enhancer RNAs (eRNAs). These results uncover BRD4 as a central regulator of ERa function and potential therapeutic target. Overall design: mRNA expression profiles of MCF7 cells treated with +/- estrogen treatment under negative control siRNA, BRD4 siRNA or JQ1 treatment, in duplicates.
Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription.
No sample metadata fields
View SamplesBromodomain-containing protein 4 (BRD4) is an important epigenetic reader which promotes gene transcription to modulate cell-specific functions and is under intensive investigation for its potential as an anti-tumor therapeutic target. However, the role of BRD4 in non-transformed cells remains unclear. Here we demonstrate that BRD4 is required for the expression of epithelial-specific genes and suppression of stem cell-like properties by binding to the distal regions of epithelial-related genes. Moreover, BRD4 occupancy correlates with enhancer activity and enhancer RNA (eRNA) transcription of epithelial differentiation-specific genes. Interestingly, we show that BRD4 perturbation regulates the expression of Grainy Head-like transcription factor, GRHL3, whose depletion partially mimics BRD4 inhibition and blocks differentiated phenotype. By binding to the distal regions of GRHL3, BRD4 promotes RNA polymerase-II occupancy and thus affects eRNA transcription. Altogether, these findings provide evidence that BRD4 promotes a differentiated epithelial phenotype in non-transformed mammary cells at least in part through the activation of GRHL3 expression. Overall design: mRNA expression profiles of MCF10A cells under negative control siRNA, BRD4 siRNA or JQ1 treatment, in duplicates.
BRD4 promotes p63 and GRHL3 expression downstream of FOXO in mammary epithelial cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Frequent pathway mutations of splicing machinery in myelodysplasia.
Cell line
View SamplesIn this study, to obtain the biological impact of the mutated U2AF35, HeLa and TF-1 cells were retrovirally transduced with either mock, wild-type or S34F mutant of U2AF35, and Expression array was performed.
Frequent pathway mutations of splicing machinery in myelodysplasia.
Cell line
View SamplesIn this study, to obtain the biological impact of the mutated U2AF35, HeLa cells were retrovirally transduced with either mock, wild-type or S34F mutant of U2AF35, and Exon array was performed.
Frequent pathway mutations of splicing machinery in myelodysplasia.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease.
Treatment
View Samples