Using a mimic miR-200c was restored to an aggressive, Type 2 endometrial cancer cell line, Hec50
MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents.
Specimen part, Cell line
View SamplesPolycomb repressive complex 2 (PRC2-EZH2) methylates histone H3 at lysine 27 (H3K27) and is required to maintain gene repression during development. Misregulation of PRC2 is linked to a range of neoplastic malignancies, which is believed to involve methylation of H3K27. However, the full spectrum of non-histone substrates of PRC2 that might also contribute to PRC2 function is not known. We characterized the target recognition specificity of PRC2 and used the resultant data to screen for novel potential targets. The RNA polymerase II (Pol II) transcription factor, Elongin A (EloA), is methylated by PRC2 in vivo. Mutation of the methylated EloA residue decreased repression of many, but not all, PRC2 target genes as measured by both steady state and nascent RNA levels. We propose that PRC2 regulates transcription of a subset of target genes in part via methylation of EloA. Overall design: We examined the transcripitonal profile of EEDnull, EloAnull, EloA mutant, and parental mouse embryonic stem cells by RNAseq. Please note that the .bw processed data file was generated from the *mESC replicate samples together and linked to the corresponding *rep1 sample records.
Polycomb Repressive Complex 2 Methylates Elongin A to Regulate Transcription.
Specimen part, Subject
View SamplesPolycomb repressive complex 2 (PRC2-EZH2) methylates histone H3 at lysine 27 (H3K27) and is required to maintain gene repression during development. Misregulation of PRC2 is linked to a range of neoplastic malignancies, which is believed to involve methylation of H3K27. However, the full spectrum of non-histone substrates of PRC2 that might also contribute to PRC2 function is not known. We characterized the target recognition specificity of PRC2 and used the resultant data to screen for novel potential targets. The RNA polymerase II (Pol II) transcription factor, Elongin A (EloA), is methylated by PRC2 in vivo. Mutation of the methylated EloA residue decreased repression of many, but not all, PRC2 target genes as measured by both steady state and nascent RNA levels. We propose that PRC2 regulates transcription of a subset of target genes in part via methylation of EloA. Overall design: We examined the nascent transcripiton profile of mES cells by adding 5-Bromouridine (BrU) to the media for 10 min. Following RNA isolation, BrU-labelled nascent RNA species were affinity purified using BrdU antibody and sequenced after library preparation. Please note that each .bw file was generated from two replicate samples together and linked to the corresponding *rep1 sample records.
Polycomb Repressive Complex 2 Methylates Elongin A to Regulate Transcription.
Specimen part, Subject
View SamplesRNA-seq analysis from young and pre-glaucomatous DBA/2J retinal ganglion cells and control (age and sex-matched, D2-Gpnmb+) retinal ganglion cells Overall design: Retinal ganglion cell mRNA from 4 month (young) and 9 month (pre-glaucomatous) DBA/2J mice and age and sex-matched D2-Gpnmb+ controls
Nicotinamide and WLD<sup>S</sup> Act Together to Prevent Neurodegeneration in Glaucoma.
Cell line, Treatment, Subject
View SamplesPurpose: We have identified a new compound (1C8) that inhibits HIV-1 replication and that displays very low cellular toxicity. Here, we assess the molecular mechanisms of action of 1C8. Following transcription of the HIV-1 genome, its primary transcript is processed to produce dozens of distinct mRNAs through the alternative use of splice sites. Results: 1C8 decreases the activity of SRSF10, a cellular protein that controls the selection of splice sites in HIV-1 transcripts. 1C8 decreases the phosphorylation of SRSF10, and this change is associated with alterations in the interaction of SRSF10 with HIV-1 transcripts and factors that control splice site selection. Thus, 1C8 represents a novel compound with properties that are potentially useful for treating HIV-1 infection. Overall design: Examination of RNA-seq to investigate alternative splicing changes between control and 4 different concentrations of a drug that 1C8. 4 replicates were sequenced for each condition.
Modulation of the splicing regulatory function of SRSF10 by a novel compound that impairs HIV-1 replication.
No sample metadata fields
View SamplesWe identified recurrent NOTCH1 mutations in 12% of MCLs. 2 out of 10 tested MCL cell lines (Rec-1 and SP-49) were sensitive to inhibition of the NOTCH pathway by gamma-secretase inhibition.
Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance.
No sample metadata fields
View SamplesBRAF inhibitors are highly effective therapies for patients with BRAF V600 mutated metastatic melanoma. Patients who receive BRAF inhibitors develop a variety of hyper-proliferative skin conditions, whose pathogenic basis is the paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyper-proliferative skin changes improve when a MEK inhibitor is co-administered, as a MEK inhibitor blocks paradoxical MAPK activation. We tested whether we could take advantage of the mechanistic understanding of the skin hyper-proliferative side effects of BRAF inhibitors to accelerate skin wound healing by inducing paradoxical MAPK activation. Here we show that the BRAF inhibitor vemurafenib accelerates human keratinocyte proliferation and migration by increasing ERK phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing models in mice accelerated cutaneous wound healing and improved the tensile strength of healing wounds through paradoxical MAPK activation; addition of a MEK inhibitor reversed the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor did not increase the incidence of cutaneous squamous cell carcinomas in mice even after the application of a carcinogen. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. Overall design: Full depth incisional wound mice tissues with/without Vemurafenib treatment were sent for RNAseq analysis on day 2, 6 and 14
Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors.
Specimen part, Subject
View SamplesVolunteers were assessed at study entry, the day of the third vaccination and 24, 72 hours, two weeks after vaccination, and 5 days after challenge. 13/39 vaccinees were protected and 26/39 were not protected. Eleven vaccinees exhibited delayed onset of parasitemia. All infectivity controls developed parasitemia. Prediction Analysis of Microarrays (PAM-R) identified genes corresponding with protection. Gene Set Enrichment Analysis (GSEA) identified sets of genes associated with protection after the third immunization, before challenge.
Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS,S malaria vaccine.
Specimen part
View SamplesGenome-wide gene expression changes in response to CBP inhibitor treatment in Treg cells using RNA sequencing (RNA-seq). Overall design: Expression profiling by RNA-seq of Treg cells treated with DMSO or CBP inhibitor
Regulatory T Cell Modulation by CBP/EP300 Bromodomain Inhibition.
No sample metadata fields
View Samples