Rationale: Pulmonary arterial hypertension is a common and potentially fatal complication of scleroderma that may involve inflammatory and autoimmune mechanisms. Alterations in the gene expression of peripheral blood mononuclear cells have been previously described in patients with pulmonary arterial hypertension. The ability to identify patients at risk for developing pulmonary hypertension would be clinically beneficial.
Altered immune phenotype in peripheral blood cells of patients with scleroderma-associated pulmonary hypertension.
Sex, Specimen part, Disease, Disease stage
View SamplesHuman herpesvirus-8 (HHV-8) is the causative agent of Kaposis sarcoma and is associated with the angioproliferative disorders primary effusion lymphoma (PEL) and multicentric Castlemans disease (MCD). We have previously described evidence of HHV-8 infection within the pulmonary vasculature of patients with idiopathic pulmonary arterial hypertension (IPAH). We speculated that viral infection of the pulmonary microvascular endothelial cells could cause the angioproliferative phenotype characteristic of severe pulmonary arterial hypertension (PAH). We now demonstrate the ability of HHV-8 to infect human pulmonary microvascular endothelial cells (HPMVECs) in vitro, confirming both latent and lytic infection. HHV-8 infection of HPMVECs resulted in significant changes of gene expression including alterations of pathways integral to both cellular apoptosis and angiogenesis. This infection also results in alterations of genes integral to the bone morphogenic protein (BMP) pathway, including down regulation of bone morphogenic protein receptor 1a (BMPR1a) and bone morphogenic protein 4 (BMP4). Other genes previously implicated in the development of PAH are also altered in expression by HHV-8 infection. These include increased expression of Interleukin-6 (IL-6) and the matrix metalloproteinases (MMP)-1, MMP-2 and MMP-10. Lastly, cells infected with HHV-8 apoptosis resistant. Infection of pulmonary microvascular endothelial cells with human herepesvirus-8 results in alteration of the BMP pathway as well as an anti-apoptotic phenotype, consistent with the development of plexiform lesions characteristic of pulmonary arterial hypertension.
Human herpesvirus-8 infection of primary pulmonary microvascular endothelial cells.
No sample metadata fields
View SamplesPeripheral blood neutrophils were isolated from septic patients and treated in vitro with LPS or HMGB1
HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury.
No sample metadata fields
View SamplesWe sought to detect predictive markers related to a Src kinase inhibitor (saracatinib) sensitivity in ovarian cancer. Cell proliferation assays assigned 18 ovarian cancer cell lines to sensitive or resistant to this drug.
PTTG1 Levels Are Predictive of Saracatinib Sensitivity in Ovarian Cancer Cell Lines.
Specimen part
View SamplesEleven NSCLC cell lines with widely divergent gefitinib sensitivities were compared using gene expression. Genes associated with gefitinib response were used to classify additional NSCLC lines with unknown gefitnib sensitivity.
Baseline gene expression predicts sensitivity to gefitinib in non-small cell lung cancer cell lines.
No sample metadata fields
View SamplesExpression data were generated on 136 subjects from the COPDGene study using Affymetrix microarrays. Multiple linear regression with adjustment for covariates (gender, age, body mass index, family history, smoking status, pack years) was used to identify candidate genes and Ingenuity Pathway Analysis was used to identify candidate pathways.
Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease.
Sex, Specimen part
View SamplesIdiopathic pulmonary fibrosis (IPF) is associated with the accumulation of collagen-secreting fibroblasts and myofibroblasts in the lung parenchyma. Many mechanisms contribute to their accumulation, including resistance to apoptosis. In previous work, we showed that exposure to the pro-inflammatory cytokines, TNF- and IFN- reverses fibroblast resistance to apoptosis. The goal of this study was to investigate the underlying mechanism. Based on an initial interrogation of the transcriptomes of unstimulated and TNF- and IFN--stimulated primary lung fibroblasts and the lung fibroblast cell line, MRC5, we show here that among Fas-signaling pathway molecules, Fas expression was increased ~6-fold in an NF-B and p38mapk-dependent fashion. Prevention of the increase in Fas expression using Fas siRNAs blocked the ability of TNF- and IFN- to sensitize fibroblasts to Fas ligation induced-apoptosis; while enforced adenovirus-mediated Fas overexpression was sufficient to overcome basal resistance to Fas-induced apoptosis. Examination of lung tissues from IPF patients revealed low to absent staining of Fas in fibroblastic cells of fibroblast foci. Collectively, these findings suggest that increased expression of Fas is necessary and sufficient to overcome the resistance of lung fibroblasts to Fas-induced apoptosis. They also suggest that approaches aimed at increasing Fas expression by lung fibroblasts and myofibroblasts may be therapeutically relevant.
Increased cell surface Fas expression is necessary and sufficient to sensitize lung fibroblasts to Fas ligation-induced apoptosis: implications for fibroblast accumulation in idiopathic pulmonary fibrosis.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis.
Sex, Age, Specimen part
View SamplesRationale: The fibrosing idiopathic interstitial pneumonias (IIPs) are classified based on clinical, radiographic, and pathologic criteria. The separation into phenotypic subgroups is useful in predicting outcome and therapeutic strategy; however a large degree of ambiguity remains. Gene expression profiling may contribute to traditional criteria in IIPs by characterizing the dynamic biology that more accurately distinguishes subtypes of these diseases or their prognoses.
Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis.
Sex, Age, Specimen part
View SamplesPersistent bronchial dysplasia (BD) is associated with increased risk of developing invasive squamous cell carcinoma (SCC) of the lung. We hypothesized that differences in gene expression profiles between persistent and regressive BD would identify cellular processes that underlie progression to SCC. RNA expression arrays (Affymetrix Hu 1.0) comparing baseline biopsies from 32 bronchial sites that persisted/progressed to 31 regressive sites showed 395 differentially expressed genes (ANOVA, FDR</=0.05). Thirty-one pathways showed statistically significant evidence of altered activity between the two groups. Multiple pathways were associated with cell cycle control/proliferation, inflammation, or epithelial differentiation/cell-cell adhesion. Polo-like kinase 1 (PLK1) was associated with multiple cell cycle pathways. Cultured persistent BD cells showed increased PLK1 expression, and following treatment with PLK1 inhibitor, showed induction of apoptosis, G2/M phase arrest and decreased proliferation compared to untreated cells. These effects were not seen in normal or regressive BD cultures. Inflammatory pathway activity was decreased in persistent BD and the presence of an inflammatory infiltrate was more common in regressive BD. Regressive BDs were also associated with trends toward overall increases in macrophages and T-lymphocytes and altered polarization of these inflammatory cell subsets. Increased desmoglein 3 and plakoglobin expression was associated with higher grade and persistence of BD. The results identify alterations in cell cycle control, inflammatory activity, and epithelial differentiation/cell-cell adhesion in the persistent subset of BDs that are associated with high risk for progression to invasive SCC. These pathways may provide strong markers of risk and effective targets for lung cancer prevention.
Altered Cell-Cycle Control, Inflammation, and Adhesion in High-Risk Persistent Bronchial Dysplasia.
Age, Specimen part
View Samples