Surgical resection is the preferred treatment for Hepatocellular carcinoma; however, it induces tumor recurrence. Our objective was to understand the molecular mechanisms linking liver regeneration under chronic-inflammation to tumorigenesis. Mdr2-knockout mice, a model of inflammation-associated cancer, underwent partial-hepatectomy which led to enhanced hepatocarcinogenesis. Yet, liver regeneration in these mice was severely attenuated. We demonstrate the activation of the DNA damage response machinery and altered genomic instability during early liver inflammatory stages resulting in hepatocyte apoptosis and cell-cycle arrest, and suggest their involvement in tumor recurrence subsequent to partial hepatectomy. We propose that under the regenerative proliferative stress induced by liver resection, the genomic unstable hepatocytes generated during chronic-inflammation, escape apoptosis and reenter the cell-cycle, triggering the enhanced tumorigenesis
Accelerated carcinogenesis following liver regeneration is associated with chronic inflammation-induced double-strand DNA breaks.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.
Sex, Age, Specimen part
View SamplesMultiple myeloma (MM) remains incurable despite the introduction of novel agents and a relapsing course is observed in the majority of patients. Although the development of genomic technologies has greatly improved our understanding of MM pathogenesis, the mechanisms underlying relapse have been less investigated. In this study, an integrative analysis of DNA copy number, DNA methylation and gene expression was conducted in matched diagnosis and relapse samples from 17 MM patients. Overall, the acquisition of abnormalities at relapse was much more frequent than the lost of lesions present at diagnosis, and DNA losses were significantly more frequent at relapse than in diagnosis samples. Interestingly, copy number abnormalities involving more than 100 Mb of DNA at relapse significantly impact the gene expression of these samples, provoking a particular deregulation of IL-8 pathway. On the contrary, no relevant modifications of gene expression were observed in those samples with less than 100 Mb affected by chromosomal changes. Although different statistical approaches were used to uncover genes whose abnormal expression at relapse was regulated by DNA methylation, only two genes significantly deregulated in relapse samples (SORL1 and GLT1D1) showed a negative methylation-expression correlation. A deeper analysis demonstrated that DNA methylation was involved in regulation of SORL1 expression in MM. Finally, relevant changes in gene expression observed in relapse samples, such us downregulation of CD27 and P2RY8, were not apparently preceded by alterations in corresponding DNA. Taken together, these results showed that genomic heterogeneity, both at the DNA and RNA level, is a hallmark of MM transition from diagnosis to relapse.
Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.
Sex, Specimen part
View SamplesDespite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described more than 30 years ago, the phenotype of MM-CSC is still a matter of debate, especially with respect to the expression of syndecan- 1 (CD138). Here, we demonstrate the presence of two subpopulations - CD138++ (95-99%) and CD138low (1-5%) - in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 surface expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are also phenotypically interconvertible. Overall, our results differ from previously published data which attribute a B-cell phenotype to MM-CSC and urge the need to explore more reliable markers to discriminate true clonogenic myeloma cells.
Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines.
Disease, Cell line
View SamplesTransciptome analysis of CD34+ enriched human HSPC lentivirally transduced with cohesin WT or mutant
Leukemia-Associated Cohesin Mutants Dominantly Enforce Stem Cell Programs and Impair Human Hematopoietic Progenitor Differentiation.
Specimen part
View SamplesUnderstanding the contribution of abnormal genetic and epigenetic programs to acute myeloid leukemia (AML) is necessary for the integrated design of targeted therapies. To investigate this, we determined the effect of epigenetic reprogramming on leukemic behavior by generating induced pluripotent stem cells (iPSCs) from AML patient samples harboring MLL rearrangements. AML-derived iPSCs (AML-iPSCs) retained leukemic mutations, but reset leukemic DNA methylation/gene expression patterns and lacked leukemic potential. However, when differentiated into hematopoietic cells, AML-iPSCs reacquired the ability to give rise to leukemia in vivo and reestablished leukemic methylation/gene expression patterns, including an aberrant MLL signature, indicating that epigenetic reprogramming was insufficient to eliminate leukemic behavior. In one case, we identified distinct AML-iPSC KRAS mutant and wildtype subclones that demonstrated differential growth properties and therapeutic susceptibilities, predicting KRAS wildtype clonal relapse due to increased cytarabine resistance. Increased cytarabine resistance was further observed in a cohort of KRAS wildtype MLL-rearranged AML samples, demonstrating the utility of AML-iPSCs in predicting subclonal relapse and facilitating clonal targeting in AML. Overall design: RNA seq profiling of normal and leukemic differentiated and iPSC populations
Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease.
Specimen part, Subject
View SamplesTo gain further insights into the role of the transcriptome deregulation in the transition from a normal plasma cell (NPC) to a clonal PC and from an indolent clonal PC to a malignant PC, we performed gene expression profiling in 20 patients with MGUS, 33 with high-risk SMM and 41 with MM. The analysis showed that 126 genes were differentially expressed in MGUS, SMM and MM as compared to NPC. Interestingly, 17 and 9 out of the 126 significant differentially expressed genes were small nucleolar RNA molecules (snoRNA) and zinc finger proteins. GADD45A was the most significant up-regulated gene in clonal PC compared to NPC. Several proapoptotic genes (AKT1 and AKT2) were downregulated and antiapoptotic genes (APAF1 and BCL2L1) were upregulated in MM, both symptomatic and asymptomatic, compared to MGUS. Myc mediated apoptosis signaling is one of the top canonical pathways differentiating the asymptomatic and symptomatic myeloma. When we looked for those genes progressively modulated through the evolving stages of monoclonal gammopathies, eight snoRNA showed a progressive increase while APAF1, VCAN and MEGF9 exhibited a progressive downregulation in the transition from MGUS to SMM and to MM. In conclusion, our data show that although MGUS, SMM and MM are not clearly distinguishable groups according to their GEP, several signaling pathways and genes were significant deregulated in the different steps of transformation process.
Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.
Specimen part, Cell line, Treatment
View SamplesKinesin spindle protein (KSP) inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (Arry-520), a KSP inhibitor, has demonstrated activity in heavily pretreated multiple myeloma (MM) patients. The aim of this work was to investigate the activity of filanesib in combination with an IMiDs plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. Results: Filanesib showed in vitro and in vivo synergy with all IMiDs plus dexamethasone treatment, particularly with the pomalidomide combination (PDF). Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and it was shown to be mediated by impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, PDF increased the activation of the proapoptotic protein Bax, which has been previously associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Conclusions: Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone and es-tablished the basis for a recently activated trial being conducted by the Spanish MM group investigating this combination in relapsed MM patients.
The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.
Specimen part, Treatment
View SamplesKinesin spindle protein (KSP) inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (Arry-520), a KSP inhibitor, has demonstrated activity in heavily pretreated multiple myeloma (MM) patients. The aim of this work was to investigate the activity of filanesib in combination with an IMiDs plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. Results: Filanesib showed in vitro and in vivo synergy with all IMiDs plus dexamethasone treatment, particularly with the pomalidomide combination (PDF). Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and it was shown to be mediated by impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, PDF increased the activation of the proapoptotic protein Bax, which has been previously associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Conclusions: Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone and es-tablished the basis for a recently activated trial being conducted by the Spanish MM group investigating this combination in relapsed MM patients.
The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.
Cell line, Treatment
View Samples