Affymetrix microarray data was generated from MCF7 breast cancer cells treated in vitro with siRNAs against 78 transcription factors and signalling molecules.
Cell cycle gene networks are associated with melanoma prognosis.
Cell line
View SamplesAffymetrix microarray data were generated from A375 melanoma cells treated in vitro with siRNAs against 45 transcription factors and signalling molecules.
Cell cycle gene networks are associated with melanoma prognosis.
Cell line
View SamplesGray leaf spot (GLS) disease of maize can be caused by either of two sibling fungal species Cercospora zeina or Cercospora zeae-maydis. These species differ in geographical distribution, for example to date only C. zeina is associated with GLS in African countries, such as South Africa. Maize inbred line B73, which is susceptible to GLS, was planted in the field, and subjected to natural infection with C. zeina. Samples were collected from lower leaves with substantial GLS lesions and younger upper leaves of the same plants with very few immature GLS lesions. The first aim of the experiment was to determine which maize genes are induced in response to C. zeina infection. The second aim was to identify C. zeina genes expressed in planta during a compatible interaction. The third aim was to determine whether the C. zeina cercosporin biosynthetic (CTB) genes are expressed in planta. C. zeina fails to produce cercosporin in vitro in contrast to C. zeae-maydis. Cercosporin is a phytotoxin that is thought to play a role in pathogenicity of several Cercospora spp., however its role in the pathogenicity strategy of C. zeina is currently under investigation. Overall design: To collect material that reflected a difference between C. zeina infected B73 leaves and control B73 leaf material, samples were collected from two lower GLS infected leaves (second and third leaf internode below ear), and two upper leaves with minimal GLS symptoms (second and third internode above ear), respectively. The two lower leaves from each plant were pooled prior to RNA extraction, and the two upper leaves from each plant were pooled prior to RNA extraction. Upper and lower leaf samples from three maize B73 plants were subjected to RNA sequencing individually. The three maize plants were selected randomly as one plant per row from three rows of ten B73 plants each.
Complementation of CTB7 in the Maize Pathogen Cercospora zeina Overcomes the Lack of In Vitro Cercosporin Production.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Diagnosis of childhood tuberculosis and host RNA expression in Africa.
Disease
View SamplesThe study aimed to define transcriptional signatures for detection of active TB (TB) compared to latent TB infection (LTBI) as well as to other diseases (OD) with similar clinical phenotypes in patients with and without HIV in two African paediatric populations.
Diagnosis of childhood tuberculosis and host RNA expression in Africa.
Disease
View SamplesThe study aimed to define transcriptional signatures for detection of active TB (TB) compared to latent TB infection (LTBI) as well as to other diseases (OD) with similar clinical phenotypes in patients with and without HIV in a paediatric cohort from Kenya
Diagnosis of childhood tuberculosis and host RNA expression in Africa.
No sample metadata fields
View SamplesMalaria infection triggers vigorous host immune responses; however, the parasite ligands, host receptors and the signaling pathways responsible for these reactions remain unknown or controversial. Malaria parasites primarily reside within red blood cells (RBCs), thereby hiding themselves from direct contact and recognition by host immune cells. Host responses to malaria infection are very different from those elicited by bacterial and viral infections and the host receptors recognizing parasite ligands have been elusive. Here we investigated mouse genome-wide transcriptional responses to infections with two strains of Plasmodium yoelii (N67 and N67C) and discovered differences in innate response pathways corresponding to strain-specific disease phenotypes. Using in vitro RNAi gene knockdown and knockout mice, we demonstrated that a strong IFN-I response triggered by RNA Polymerase III and melanoma differentiation-associated protein 5 (MDA5), not Toll-like receptors (TLRs), binding of parasite DNA/RNA contributed to a decline of parasitemia in N67-infected mice. We showed that conventional dendritic cells were the major sources of early IFN-I, and that surface expression of phosphatidylserine (PS) on infected RBC (iRBC) might promote their phagocytic uptake, leading to the release of parasite ligands and the IFN-I response in N67 infection. In contrast, an elevated inflammatory response mediated by CD14/TLR and p38 signaling played a role in disease severity and early host death in N67C-infected mice. In addition to identifying cytosolic DNA/RNA sensors and signaling pathways previously unrecognized in malaria infection, our study demonstrates the importance of parasite genetic backgrounds in malaria pathology and provides important information for studying human malaria pathogenesis.
Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality.
Sex, Specimen part
View SamplesBackground: Maize plants developed typical gray leaf spot disease (GLS) symptoms initiating at the lower leaves and progressing to upper leaves through the season. Leaf material was collected at 77 days after planting, at which stage there were a large number of GLS disease necrotic lesions on lower leaves (8% surface area on average determined by digital image analysis), but very few lesions and only at chlorotic stage on leaves above the ear (average of 0.2% lesion surface area). Method:To collect material that reflected a difference between C.zeina infected B73 leaves and control B73 leaf material, samples were collected from two lower GLS infected leaves (second and third leaf internode below ear) , and two upper leaves with minimal GLS symptoms (second and third internode above ear), respectively. The two lower leaves from each plant were pooled prior to RNA extraction, and the two upper leaves from each plant were pooled prior to RNA extraction. Upper and lower leaf samples from three maize B73 plants were subjected to RNA sequencing individually. The three maize plants were selected randomly as one plant per row from three rows of ten B73 plants each. Result: A systems genetics strategy revealed regions on the maize genome underlying co-expression of genes in susceptible and resistance responses, including a set of 100 genes common to the susceptible response of sub-tropical and temperate maize. Overall design: To collect material that reflected a difference between C.zeina infected B73 leaves and control B73 leaf material, samples were collected from two lower GLS infected leaves (second and third leaf internode below ear) , and two upper leaves with minimal GLS symptoms (second and third internode above ear), respectively. The two lower leaves from each plant were pooled prior to RNA extraction, and the two upper leaves from each plant were pooled prior to RNA extraction. Upper and lower leaf samples from three maize B73 plants were subjected to RNA sequencing individually. The three maize plants were selected randomly as one plant per row from three rows of ten B73 plants each.
Systems genetics reveals a transcriptional network associated with susceptibility in the maize-grey leaf spot pathosystem.
Subject
View SamplesTo understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process.
Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.
Age, Specimen part
View SamplesThe intestine is composed of an epithelial layer, containing rapidly proliferating cells that mature into two distinct anatomic regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for the whole intestine, no studies have compared stem cells derived from the small and large intestine. Here, we report intrinsic differences between these two populations of cells. Primary epithelial cells isolated from human fetal small and large intestine and expanded with Wnt agonist, R-spondin 2, displayed differential expression of stem cell markers and separate hierarchical clustering of gene expression involved in differentiation, proliferation and disease pathways. Using a three-dimensional in vitro differentiation assay, single cells derived from small and large intestine formed distinct organoid architecture with cellular hierarchy similar to that found in primary tissue. Our characterization of human fetal intestinal stem cells defies the classical definition proposed by most where small and large intestine are repopulated by an identical epithelial stem cell and raises the question of the importance of intrinsic and extrinsic cues in the development of intestinal diseases.
Distinct human stem cell populations in small and large intestine.
Specimen part
View Samples