Goal of the analysis was to identify the mechansisms accounting fo the synergy of T cells redirected to the tumor associated large T antigen and T cells redirected to the Uty minor histocompatibility antigen
T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors.
Specimen part, Treatment
View SamplesStudy the training exercise effects in chronic obstructive pulmonary disease (COPD) patients and aged-matched healthy individuals. Skeletal muscle biopsies from 9 stable COPD patients with normal fat free mass index (FFMI, 21Kg/m2) (COPDN), 6 COPD patients with low FFMI (16Kg/m2) (COPL), and 12 healthy sedentary subjects (FFMI 21Kg/m2) before and after 8 weeks of a supervised endurance exercise program were analyzed.
A systems biology approach identifies molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.
Specimen part, Disease, Disease stage, Subject
View SamplesThe LH surge triggers dramatic transcriptional changes in genes associated with ovulation and luteinization. The present study investigated the spatiotemporal expression of nuclear factor interleukin-3 (NFIL3), a transcriptional regulator of the bZIP transcription factor superfamily, and its potential role in the ovary during the periovulatory period. NFIL3, also known as E4-binding protein 4 or NFIL3/E4BP4, was originally identified as a transcriptional repressor based on its DNA-binding activity at the promoter of the gene encoding the adenovirus E4 protein. Immature female rats were injected with PMSG, treated with hCG, and ovaries or granulosa cells were collected at various times after hCG. Nfil3 mRNA was highly induced both in intact ovaries and granulosa cells after hCG treatment. In situ hybridization demonstrated that Nfil3 mRNA was highly induced in theca-interstitial cells at 4-8 h after hCG, localized to granulosa cells at 12 h, and decreased at 24 h. Over-expression of NFIL3 in granulosa cells inhibited the induction of prostaglandin-endoperoxide synthase 2 (Ptgs2), progesterone receptor (Pgr), epiregulin (Ereg), and amphiregulin (Areg) and down regulated levels of prostaglandin E2. The inhibitory effect on Ptgs2 induction was reversed by NFIL3 siRNA treatment. In theca-interstitial cells the expression of hydroxyprostaglandin dehydrogenase 15-(NAD) (Hpgd) was also inhibited by NFIL3 over-expression. Data from luciferase assays demonstrated that NFIL3 over-expression decreased the induction of the Ptgs2 and Areg promoter activity. EMSA and ChIP analyses indicated that NFIL3 binds to the promoter region containing the DNA binding sites of CREB and C/EBP?. In summary, hCG induction of NFIL3 expression may modulate the process of ovulation and theca-interstitial and granulosa cell differentiation by regulating expression of PTGS2, PGR, AREG, EREG, and HPGD, potentially through interactions with CREB and C/EBP? on their target gene promoters.
A role for nuclear factor interleukin-3 (NFIL3), a critical transcriptional repressor, in down-regulation of periovulatory gene expression.
Sex
View SamplesType 1 diabetes is a multigenic disease caused by T-cell mediated destruction of the insulin producing -cells. Although conventional (targeted) approaches of identifying causative genes have advanced our knowledge of this disease, many questions remain unanswered. Using a whole molecular systems study, we unraveled the genes/molecular pathways that are altered in CD4 T-cells from young NOD mice prior to insulitis (lymphocytic infiltration into the pancreas). Many of the CD4 T-cell altered genes lie within known diabetes susceptibility regions (Idd), including several genes in the diabetes resistance region Idd13 and two genes (Khdrbs1 and Ptp4a2) in the CD4 T-cell diabetogenic activity region Idd9/11. Alterations involved apoptosis/cell proliferation and metabolic pathways (predominant at 2 weeks), inflammation and cell signaling/activation (predominant at 3 weeks), and innate and adaptive immune responses (predominant at 4 weeks). We identified several factors that may regulate these abnormalities: IRF-1, HNF4A, TP53, BCL2L1 (lies within Idd13), IFNG, IL4, IL15, and prostaglandin E2, which were common to all 3 ages; AR and IL6 to 2 and 4 weeks; and Interferon (IFN-I) and IRF-7 to 3 and 4 weeks. Others were unique to the various ages (e. g. MYC, JUN, and APP to 2 weeks; TNF, TGFB1, NFKB, ERK, and p38MAPK to 3 weeks; and IL12 and STAT4 to 4 weeks). Our data suggest that diabetes resistance genes in Idd13 and Idd9/11, and BCL2L1, IL6-AR and IFNG-IRF-1-IFN-I/IRF-7-IL12 pathways play an important role in CD4 T-cells in the early pathogenesis of autoimmune diabetes. Thus, the alternative approach of investigation at the molecular systems level has captured new information, which combined with validation studies, offers the opportunity to test hypotheses on the role played by the genes/molecular pathways identified in this study, to understand better the mechanisms of autoimmune diabetes in CD4 T-cells, and to develop new therapeutic strategies for the disease.
Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes.
Age, Specimen part
View SamplesIron-deficiency repsonses in Arabidopsis are controlled by several bHLH transcription factors. FIT, for example has been shown to direct iron-uptake responses. However, the role of shoot and root expressed genes bHLH100 and bHLH101 has not be clarified. We used microarray to study what genes might be miss-regulated in the double mutant bhlh100/bhlh101 background
Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway.
Age, Specimen part, Treatment
View SamplesCell migration is an instrumental process that ensures cells are properly positioned to support the specification of distinct tissue types during development. To provide insight, we used fluorescence activated cell sorting (FACS) to isolate two migrating cell types from the Drosophila embryo: caudal visceral mesoderm (CVM) cells, precursors of longitudinal muscles of the gut, and hemocytes (HCs), the Drosophila equivalent of blood cells. ~350 genes were identified from each of the sorted samples using RNA-seq, and in situ hybridization was used to confirm expression within each cell type or, alternatively, within other interacting, co-sorted cell types. To start, the two gene expression profiling datasets were compared to identify cell migration regulators that are potentially generally-acting. 73 genes were present in both CVM cell and HC gene expression profiles, including the transcription factor zinc finger homeodomain-1 (zfh1). Comparisons with gene expression profiles of Drosophila border cells that migrate during oogenesis had a more limited overlap, with only the genes neyo (neo) and singed (sn) found to be expressed in border cells as well as CVM cells and HCs, respectively. Neo encodes a protein with Zona pellucida domain linked to cell polarity, while sn encodes an actin binding protein. Tissue specific RNAi expression coupled with live in vivo imaging was used to confirm cell-autonomous roles for zfh1 and neo in supporting CVM cell migration, whereas previous studies had demonstrated a role for Sn in supporting HC migration. In addition, comparisons were made to migrating cells from vertebrates. Seven genes were found expressed by chick neural crest cells, CVM cells, and HCs including extracellular matrix (ECM) proteins and proteases. In summary, we show that genes shared in common between CVM cells, HCs, and other migrating cell types can help identify regulators of cell migration. Our analyses show that neo in addition to zfh1 and sn studied previously impact cell migration. This study also suggests that modification of the extracellular milieu may be a fundamental requirement for cells that undergo cell streaming migratory behaviors. Overall design: Examination of genes expressed in two migrating cell populations (CVM and hemocytes) during their active cell migration and the rest of cell types of corresponding stages
Comparative analysis of gene expression profiles for several migrating cell types identifies cell migration regulators.
Specimen part, Subject
View SamplesDetermining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Shifting from in vivo, low-throughput toxicity studies to high-throughput screening (HTS) paradigms and risk assessment based on in vitro and in silico testing requires utilizing toxicity pathway information to distinguish adverse outcomes from recoverable adaptive events. Little work has focused on oxidative stresses in human airway for the purposes of predicting adverse responses. We hypothesize that early gene expression-mediated molecular changes could be used to delineate adaptive and adverse responses to environmentally-based perturbations. Here, we examined cellular responses of the tracheobronchial airway to zinc (Zn) exposure, a model oxidant. Airway derived BEAS-2B cells exposed to 210 M Zn2+ elicited concentration- and time-dependent cytotoxicity. Normal, adaptive, and cytotoxic Zn2+ exposure conditions were determined with traditional apical endpoints, and differences in global gene expression around the tipping point of the responses were used to delineate underlying molecular mechanisms. Bioinformatic analyses of differentially expressed genes indicate early enrichment of stress signaling pathways, including those mediated by the transcription factors p53 and NRF2. After 4 h, 154 genes were differentially expressed (p <0.01) between the adaptive and cytotoxic Zn2+ concentrations. Nearly 40% of the biomarker genes were related to the p53 signaling pathway with 30 genes identified as likely direct targets using a database of p53 ChIP-seq studies. Despite similar p53 activation profiles, these data revealed widespread dampening of p53 and NRF2-related genes as early as 4 h after exposure at higher, unrecoverable Zn2+ exposures. Thus, in our model early increased activation of stress response pathways indicated a recoverable adaptive event. Overall, this study highlights the importance of characterizing molecular mechanisms around the tipping point of adverse responses to better inform HTS paradigms.
Developing a Gene Biomarker at the Tipping Point of Adaptive and Adverse Responses in Human Bronchial Epithelial Cells.
Cell line, Time
View SamplesBackground: Preterm birth is the leading cause of all infant mortality. In 2004, 12.5% of all births were preterm. In order to understand preterm labor, we must first understand normal labor. Since many of the myometrial changes that occur during pregnancy are similar in mice and humans and mouse gestation is short, we have studied the uterine genes that change in the mouse during pregnancy. Here, we used microarray analysis to identify uterine genes in the gravid mouse that are differentially regulated in the cyclooxygenase-1 knockout mouse model of delayed parturition.
Identification of 9 uterine genes that are regulated during mouse pregnancy and exhibit abnormal levels in the cyclooxygenase-1 knockout mouse.
No sample metadata fields
View SamplesPost-transcriptional regulation of cellular mRNA is essential for protein synthesis. Here we describe the importance of mRNA translational repression and mRNA subcellular location for protein expression during B lymphocyte activation and the DNA damage response. Cytoplasmic RNA granules are formed upon cell activation with mitogens, including stress granules that contain the RNA binding protein Tia1. Tia1 binds to a subset of transcripts involved in cell stress, including p53 mRNA, and controls translational silencing and RNA granule localization. DNA damage promotes mRNA relocation and translation in part due to dissociation of Tia1 from its mRNA targets. Upon DNA damage, p53 mRNA is released from stress granules and associates with polyribosomes to increase protein synthesis. Global analysis of cellular mRNA abundance and translation indicates that this is an extended ATM-dependent mechanism to increase protein expression of key modulators of the DNA damage response. Overall design: Splenic B cells from C57BL/6Babr mice were isolated and activated with LPS for 48 hours prior induction or not of DNA damage with etoposide. After 4 hours, cells were treated with cycloheximide (100 microgrames per ml) for 3 minutes. Then, cytoplasmic extracts were collected. Polysome fractionation in sucrose gradients (10-50% sucrose) was performed for isolation of mRNA associated to monosomes (fractions 4 to 7), light polysomes (fractions 8 to 10) or heavy polysomes (fractions 11 to 16). The ATM kinase inhibitor KU55933 was added 1 hour prior induction of DNA damage with etoposide.
Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells.
Specimen part, Cell line, Subject
View SamplesHuman medulloblastoma (MB) can be segregated into four major categories based on gene expression patterns: Hedgehog (HH) subtype, Wnt subtype, Group 3, and Group 4. However, they all exhibit strikingly different gene expression profiles from Atypical Teratoid/Rhabdoid Tumor (AT/RT). We re-analyzed published gene expression microarray dataset of pediatric brain tumors to identify a gene expression profile that clearly distinguished human AT/RT from human MB. We used this profile, choosing only genes that have clear murine orthologs, to compare tumors from Snf5F/Fp53L/LGFAP-Cre mice (in C57Bl/6 strain background) with MB from Ptc1+/- mice (in mixed C57Bl/6 and 129Sv strain background). Snf5F/Fp53L/LGFAP-Cre tumors are clearly very different from mouse MB and the markers that distinguish human AT/RT from human MB also distinguish the mouse tumors.
Generation of a mouse model of atypical teratoid/rhabdoid tumor of the central nervous system through combined deletion of Snf5 and p53.
No sample metadata fields
View Samples