This SuperSeries is composed of the SubSeries listed below.
Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans.
No sample metadata fields
View SamplesUtilizing C. elegans as a model of mitochondrial dysfunction provides insight into cellular adaptations which occur as a consequence of genetic alterations causative of human disease. We characterized genome-wide expression profiles of hypomorhpic C. elegans mutants in nuclear-encoded subunits of respiratory chain complexes I, II and III.
Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans.
No sample metadata fields
View SamplesUtilizing C. elegans as a model of mitochondrial dysfunction provides insight into cellular adaptations which occur as a consequence of genetic alterations causative of human disease. We characterized genome-wide expression profiles of hypomorphic C. ele
Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans.
No sample metadata fields
View SamplesOur study demonstrates that neutrophils infiltrate early-stage PTEN-deficient uterine tumors and oppose tumor growth and malignant progression by inducing detachment and ultimately promoting cell death of tumor cells. This RNA-seq study examined the expression profiles of these uterine epithelial tumor cells in the presence versus absence of neutrophil infiltration. Overall design: Tumor cells from 4-week-old tumor-bearing neutrophil-sufficient versus -deficient mice were isolated by fluorescence activated cell sorting, RNA was isolated, and expression profiles were analyzed by deep sequencing.
Neutrophils Oppose Uterine Epithelial Carcinogenesis via Debridement of Hypoxic Tumor Cells.
Age, Specimen part, Subject
View SamplesChromatin modifying activities for construction of appropriate epigenetic landscapes by polycomb repressive complex 2 (PRC2) play an essential role in development and tumorigenesis. However, the spatiotemporal mechanisms by which PRC2 achieves diverse epigenomes for specific tissue or cellular contexts remain poorly understood. Here, we discovered that LATS2 knockout causes dysregulation of PRC2 and subsequent transcriptome changes for differentiation in both mouse and human cells. LATS2 depletion dependent dysregulation of PRC2 also effects H3K4me3 and forms negative feedback loop for maintenance of PRC2. Further analyses reveal that LATS2 on chromatin binds to EZH2 and LATS2 has ability to phosphorylate PRC2 in vitro. These LATS2 dependent H3K27me3 targets are highly induced during neurogenesis, and statistical analysis of glioblastoma multiforme reveals that LATS2-high cases show more dedifferentiated transcriptome and poor prognosis with silencing of H3K27me3 targets. These observations suggest that LATS2-mediated epigenome coordination is pivotal for development and disease, including cancer. Overall design: mRNA of LATS2 KO HeLa-S3 cells rescued by empty vector, wild-type LATS2 or kinase-dead LATS2 were subjected to deep sequencing profiling using Illumina HiSeq 2500
LATS2 Positively Regulates Polycomb Repressive Complex 2.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.
Specimen part, Disease, Disease stage, Subject
View SamplesSurgical samples have long been used as important subjects for cancer research. In accordance with an increase of neoadjuvant therapy, biopsy samples have recently become imperative for cancer transcriptome. On the other hand, both biopsy and surgical samples are available for expression profiling for predicting clinical outcome by adjuvant therapy; however, it is still unclear whether surgical sample expression profiles are useful for the prediction by the use of biopsy samples because little has been done about comparative gene expression profiling between the two kinds of samples.
Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.
Specimen part, Disease, Disease stage
View SamplesSurgical samples have long been used as important subjects for cancer research. In accordance with an increase of neoadjuvant therapy, biopsy samples have recently become imperative for cancer transcriptome. On the other hand, both biopsy and surgical samples are available for expression profiling for predicting clinical outcome by adjuvant therapy; however, it is still unclear whether surgical sample expression profiles are useful for the prediction by the use of biopsy samples because little has been done about comparative gene expression profiling between the two kinds of samples.
Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.
Specimen part, Disease, Disease stage, Subject
View SamplesSurgical samples have long been used as important subjects for cancer research. In accordance with an increase of neoadjuvant therapy, biopsy samples have recently become imperative for cancer transcriptome. On the other hand, both biopsy and surgical samples are available for expression profiling for predicting clinical outcome by adjuvant therapy; however, it is still unclear whether surgical sample expression profiles are useful for the prediction by the use of biopsy samples because little has been done about comparative gene expression profiling between the two kinds of samples.
Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.
Specimen part, Disease, Disease stage
View SamplesTo investigate the expression characteristic of miRNAs during the development of Down syndrome (DS) fetuses and to identify whether another miRNA gene resides in the Hsa21, we employed high-throughput Solexa sequencing technology to comprehensively characterize the miRNA expression profiles of both DS and normal fetal cord blood mononuclear cells (CBMCs). In total, 200 of 395 identified miRNAs were significantly differentially expressed (fold change > 2.0 and P-value < 0.001) and 2 of 181 candidate novel miRNAs were identified as residing within the "Down syndrome critical region" of human chromosome 21 (chr21q22.2-22.3). Additionally, 7 of 14 Hsa21-derived miRNAs genes were detected that three miRNAs (hsa-miR-802, miR-3648, miR-3687) were up-regulated more than 50% and four miRNAs (hsa-miR-99a, let-7c, miR-125b-2, miR-155) were down-regulated in the DS fetal CBMCs compared with the control. Bioinformatics analyses revealed that abnormally expressed miRNAs were major associated with the regulation of transcription, gene expression, cellular biosynthetic process, macromolecule biosynthetic process and nucleic acid metabolic process. The data obtained in our study provides a considerable insight into understanding the expression characteristic of miRNAs in the DS fetal hemopoietic system and the differentially expressed miRNAs may be involved in the hemopoietic abnormalities and the immune defects of DS fetus and newborns. Overall design: A total of 6 DS and 6 matched control fetal cord blood samples (18-22 weeks of gestation) were collected. Three DS and 3 control cord blood samples were combined to form pooled DS and control cord blood samples, respectively, for small RNA library construction and Solexa sequencing. The remaining samples were used as the validation set to confirm the miRNA differential expression patterns by qRT-PCR.
Analysis of microRNA expression profile by small RNA sequencing in Down syndrome fetuses.
Specimen part, Disease, Subject
View Samples