SON is a large Ser/Arg (SR)-related protein localized in nuclear speckles. SON siRNA causes defects in mitotic progression and genome instability. We used microarrays to detail the pattern of gene expression after SON knockdown.
SON controls cell-cycle progression by coordinated regulation of RNA splicing.
Specimen part
View SamplesHira has been implicated in replication-independent chromatin assembly.
Distinct factors control histone variant H3.3 localization at specific genomic regions.
Specimen part
View SamplesWe demonstrate that the G protein Gi3 is the cellular target of the adenosine A3 receptor (A3R). By using a cell permeable peptide comprising the C-terminal end of Gi3 fused to an importation sequence (ALL1) as a selective inhibitor of Gi3 signaling, we show that by coupling to Gi3, the A3R stimulates multiple signaling pathways in human mast cells, leading to upregulation of cytokines, chemokines and growth factors.Following contact with activated T cell membranes, endogenous adenosine binds to and activates the A3R, resulting in Gi3-mediated signaling. Specifically, the majority of ERK1/2 signaling initiated by contact with activated T cell membranes, is mediated by Gi3, giving rise to ALL1-inhibitable cellular responses. These results unveil the physiological GPCR that couples to Gi3 and establish the important role played by this G-protein in inflammatory conditions that involve adenosine-activated mast cells.
Activation of mast cells by trimeric G protein Gi3; coupling to the A3 adenosine receptor directly and upon T cell contact.
Cell line
View SamplesOocyte quality is a well- established determinant of embryonic fate. However, the molecular participants and biological markers that affect and predict adequate embryonic development are largely elusive. We have previously reported that oocyte- directed Connexin 43 (Cx43) depletion leads to embryo implantation defects, although both the morphology of the oocyte and processes presiding embryo implantation appear to undergo normally. In the context of previous data determining Cx43 indispensability to oocyte and embryonic development, we show here that the timing of Cx43 depletion from the oocyte and the ovarian follicle is crucial in determining the severity of subsequent embryonic defects. Specifically, we show that the implantation defects of blastocysts resulting from oocyte- directed Cx43- depleted follicles (depletion occurs at day 3 postnatal), is not due to maternal luteal insufficiency but rather depends solely on the defective blastocysts. Gene expression microarray analysis revealed global defects in the expression of ribosomal proteins, translation initiation factors and other genes associated with cellular biosynthetic and metabolic processes in these defective oocytes and specifically blastocysts. We therefore propose that timely expression of Cx43 in the oocyte and ovarian follicles is a major determinant of oocyte developmental competence, by determining the ability of the resulting blastocyst to facilitate biomass expansion and undergo adequate embryo implantation
Blastocyst implantation failure relates to impaired translational machinery gene expression.
Specimen part
View SamplesWe aimed to define epithelial-specific genes in the kidney. In the developing mouse kidney at E12.5 epithelial cells are restricted to the ureteric bud, while mesenchymal cells surrounding the ureteric bud are non-epithelial. The mouse renal epithelial cell line mIMCD-3 was used to represent kidney epithelia in vitro. Gene expression was analyzed using Affymetrix microarrays in ureteric bud stalks, ureteric bud tips, and mIMCD-3 cells and compared to metanephric mesenchyme.
The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex.
Specimen part, Cell line
View SamplesWhen assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms'' tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1+CD133- marks SIX2+ multipotent renal stem cells transiting to NCAM1+CD133+ differentiating segment-specific SIX2- epithelial progenitors and NCAM1-CD133+ differentiated nephron cells. In tumorigenesis, NCAM1+CD133- marks SIX2+ blastema that includes the ALDH1+ WT cancer stem/initiating cells, while NCAM1+CD133+ and NCAM1-CD133+ specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1+ nephron stem cells in normal and malignant nephrogenesis. Overall design: Human fetal kidney mRNA profiles of 3 cell populations (NCAM1+/CD133-, NCAM+/CD133+, NCAM-/CD133+) were generated by deep sequencing using Illumina HiSeq.
Dissecting Stages of Human Kidney Development and Tumorigenesis with Surface Markers Affords Simple Prospective Purification of Nephron Stem Cells.
No sample metadata fields
View SamplesCancer stem cell (CSC) identification relies on transplantation assays of cell sub-populations sorted from fresh tumor samples. Herein, we attempt to bypass limitations of abundant tumor source and predetermined immune selection by in-vivo propagating patient derived xenografts (PDX) from human malignant rhabdoid tumor (MRT), a rare and lethal pediatric neoplasm, to an advanced state in which most cells behave as CSCs. Stemness is then probed by comparative transcriptomics of serial PDXs generating a gene signature of EMT, invasion/motility, metastasis and self-renewal, pinpointing putative MRT CSC markers. The relevance of these putative CSC molecules is analyzed by sorting tumorigenic fractions from early-passaged PDX according to one such molecule, deciphering expression in archived primary tumors and testing the effects of CSC molecule inhibition on MRT growth. Using this platform, we identify ALDH1 and lysyl oxidase (LOX) as relevant targets and provide a larger framework for target and drug discovery in rare pediatric cancers. Overall design: Tumorigenic fractions from early-passaged PDX
In Vivo Expansion of Cancer Stemness Affords Novel Cancer Stem Cell Targets: Malignant Rhabdoid Tumor as an Example.
Subject
View SamplesSorafenib leads to a survival benefit in patients with advanced hepatocellular carcinoma but its use is hampered by the occurrence of drug resistance. To investigate the molecular mechanisms involved we developed five resistant human liver cell lines in which we studied morphology, gene expression and invasive potential. The cells changed their appearance, lost E-cadherin and KRT19 and showed high expression of vimentin, indicating epithelial-to-mesenchymal transition. Resistant cells showed reduced adherent growth, became more invasive and lost liver-specific gene expression. Furthermore, following withdrawal of sorafenib, the resistant cells showed rebound growth, a phenomenon also found in patients. This cell model was further used to investigate strategies for restoration of sensitivity to sorafenib.
Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth.
Cell line
View SamplesWe analyzed the transcriptome of dormant and after-ripened imbibed seeds of the Arabidopsis accession Cape verde Islands.
Dormant and after-Ripened Arabidopsis thaliana Seeds are Distinguished by Early Transcriptional Differences in the Imbibed State.
Specimen part, Time
View SamplesFoxp1/4 transcription factors are conserved transcriptional repressors expressed in overlapping patterns during lung development as well as in the adult lung. However, the role of Foxp1/4 in development and homeostasis of the pseudostratified epithelium of the proximal airways and trachea is unknown.
Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2.
Specimen part
View Samples