We used wild-type 129 mice to understand the mechanism of action behind SRT3025’s hematopoiesis-enhancing effect. Transcriptome analysis of cKit+ Sca1+ Lin- cells (KSL) cells discovered that a list of genes changed their expression levels significantly after SRT3025 administration in wild-type mice. Most notably, the cell cycle regulator p21 was down-regulated by 2.1 fold after SRT3025 administration. It is possible that the transcriptional suppression of p21 by SRT3025 might contribute to the compound’s beneficial effects on hematopoiesis. It has to be pointed out that, since our transcriptome analysis was limited to hematopoietic stem and progenitor cell population, we cannot rule out the possibility that SRT3025 works through the regulation of other cells such as certain important HSC niche components. The HSC niche is known to regulate stem cell pool size. Among the other genes suppressed by SRT3025, Thbs1 and Fosl2 encode thrombospondin 1 and Fos-like antigen 2, respectively. Both proteins are components of the HSC niche. Overall design: The goal of this study is to investigate gene expression changes in wild-type 129 mice in response to SRT3025 treatment. The study focuses on bone marrow cKit+ Sca1+ Lin- cells (representing hematopoietic stem and progenitor cells). These cells were sorted twice by FACS to ensure the purity. Cells of interest were collected in Trizol. RNA were isolated using RNAeasy mini prep kit and mRNAs were positively selected using oligo(dT)- Dynobeads. Then RNAseq libraries were then made using Illumina TruSeq RNA Sample Prep Kit and sequeced on an Illumina HiSeq 2000 genome analyzer.
The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice.
No sample metadata fields
View SamplesWe used Fancd2-/- mice to understand its mechanism of action. Transcriptome analysis of cKit+ Sca1+ Lin- (KSL) cells discovered that only four genes changed their expression levels significantly after chronic OXM administration in both Fancd2-/- and wild-type mice: mKi67 and Cenpf were up-regualted by 1.4 fold; Spp1 and Oasl2 were significantly down-regulated by 10.5 and 1.5 fold, respectively. Both mKi67 and Cenpf genes are cell cycle-regulated genes and proliferation markers. Their up-regulation was consistent with our observation in flow cytometry analysis that oxymetholone stimulated the proliferation of hematopoietic stem and progenitor cells. RNAseq analysis showed no effects on mTert mRNA expression with chronic androgen therapy, but instead suggested down-regulation of Spp1 and Oasl2 as an important mechanism for the drug’s action. Our RNAseq analysis also revealed that Fancd2-/- KSL cells showed clear changes in mRNA expression profiles compared to wild-type controls: 430 genes were down-regulated by more than 1.5 fold, whereas 159 genes were up-regulated. Gene ontology analysis revealed key pathways to be significantly altered in Fancd2-/- KSL cells. Besides the abnormal cell cycle status expected from our earlier flow cytometry analysis, surprisingly we noticed that a group of genes involved in immune responses and inflammation, comprising Cfp (Properdin), Socs2, Ccr1, Ccr2, Ccr5, Chga (Chromogranin A), Ifi30 (Interferon Gamma-Inducible Protein 30), Lgmn, Txn, and Sell (selectin L), were up-regulated in Fancd2-/- KSL cells. We therefore hypothesize that some genes up-regulated in FA HSPCs may be part of an innate immune response to DNA damage. In addition, whole bone marrow cells were also analyzed in parallel with KSL cells. As compared to whole bone marrow cells, the genes enriched in KSL cells in wild-type mice were listed in details in the corresponding publication. This information can be a good resource for the future gene expression analysis of HSPCs. Finally, we compared the gene expression profiles of early progenitors between OXM-treated and placebo-treated mice. There were no significant differences at all in gene expression between OXM-treated wild-type erythroid progenitors and their placebo-treated wild-type counterparts, with no genes displaying an expression change higher than 1.2 fold. Importantly, no up-regulation of EPO-inducible genes such as Socs1, Socs2, Socs3, and Cish was seen in wild-type mice treated with OXM. Furthermore, there was no differential expression of the well-known EPO target transferrin receptor or any other major players of the Epo-R signaling network such as Bcl2l1, Cdc25a, Btg3, Ccnd2, Lyl1, Pim3, and Tnfrsf13c. These results indicate that EPO might not play a role in the action of OXM in the erythroid lineage. Overall design: The goal of this study is to investigate gene expression changes in Fancd2 knockout mice in response to oxymetholone treatment. The study focuses on two bone marrow cell populations: cKit+ Sca1+ Lin- cells (representing hematopoietic stem and progenitor cells) and Ter119+/CD71high/FSChigh cells (representing proerythroblasts and basophilic erythroblasts). Both populations were sorted twice by FACS to ensure the purity. Cells of interest were collected in Trizol and RNA was isolated using RNAeasy mini prep kit. mRNAs were positively selected using oligo(dT)- Dynobeads and treated with DNase I. RNAseq libraries were then constructed using Illumina TruSeq RNA Sample Prep Kit and sequenced as 51 base-length reads on an Illumina HiSeq 2000 genome analyzer. For KSL libraries, each sample represented total mRNA isolated from pooled KSL cells of 5 individual mice; for basophilic erythroblast libraries, each library represented total mRNA isolated from basophilic erythroblasts of one individual mouse; for whole bone marrow libraries, each sample represented a combined library originally from 5 individual mice. All reads were mapped to the mouse reference genome (version mm9) using Bowtie short read aligner software (http://bowtie-bio.sf.net). Most of the data analysis was performed using EdgeR GLM algorithms. For the comparison of oxymetholone KSL libraries vs placebo KSL libraries, more stringent pair-wise comparisons were used to keep a consistent flow cytometric setting among each pair. The common gene list was the one shared by all three comparisons: COM17 vs HSC_101b, HSC_13 vs HSC_18, and HSC_23 vs QZ_35 for Fancd2-/- KSL cells; HSC_3 vs QZ_36, HSC_22 vs HSC_24, and COM15 vs COM16 for wild-type KSL cells. Data-mining and pathway analysis were carried out with the MetaCore integrated software suite (Thomson Reuters, New York, USA).
Oxymetholone therapy of fanconi anemia suppresses osteopontin transcription and induces hematopoietic stem cell cycling.
No sample metadata fields
View SamplesDeregulation of the transforming growth factor- (TGF) signaling pathway in epithelial ovarian cancer has been reported, but the precise mechanism underlying disrupted TGF signaling in the disease remains unclear. We performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) to investigate genome-wide screening of TGF-induced SMAD4 binding in epithelial ovarian cancer. Following TGF stimulation of the A2780 epithelial ovarian cancer cell line, we identified 2,362 SMAD4 binding loci and 318 differentially expressed SMAD4 target genes. Comprehensive examination of SMAD4-bound loci, revealed four distinct binding patterns: 1) Basal; 2) Shift; 3) Stimulated Only; 4) Unstimulated Only. SMAD4-bound loci were primarily classified as either Stimulated only (74%) or Shift (25%), indicating that TGF-stimulation alters SMAD4 binding patterns in epithelial ovarian cancer cells compared to normal epithelial cells. Furthermore, based on gene regulatory network analysis, we determined that the TGF-induced SMAD4-dependent regulatory network was strikingly different in ovarian cancer compared to normal cells. Importantly, the TGF/SMAD4 target genes identified in the A2780 epithelial ovarian cancer cell line were predictive of patient survival, based on in silico mining of publically available patient data bases. In conclusion, our data highlight the utility of next generation sequencing technology to identify genome-wide SMAD4 target genes in epithelial ovarian cancer. The results link aberrant TGF/SMAD signaling to ovarian tumorigenesis. Furthermore, the identified SMAD4 binding loci, combined with gene expression profiling and in silico data mining of patient cohorts, may provide a powerful approach to determine potential gene signatures with biological and future translational research in ovarian and other cancers.
ChIP-seq defined genome-wide map of TGFβ/SMAD4 targets: implications with clinical outcome of ovarian cancer.
Cell line, Treatment
View SamplesAbstract
Breast cancer-associated fibroblasts confer AKT1-mediated epigenetic silencing of Cystatin M in epithelial cells.
No sample metadata fields
View SamplesPurpose: Single-cell whole transcriptome sequencing was used to better understand the mechanism of action of our Dyrk1a inhibitor''s proliferation of pancreatic islets. Methods: primary pancreatic islets were isolated, cultured, and stimulated with either 0.1% DMSO or 3 µM GNF4877. Single cells were captured and cDNA isolated on a Fluidigm C1 instrument. Sequencing libraries were made with Nextera XT reagents (Illumina) and single-end 50 bp reads were generated on an Illumina HiSeq 1000. Reads were mapped to the rat transcriptome. Results: Consistent with GNF4877 eliciting beta cell proliferation, we observed an increase in the number of beta cells co-expressing insulin 1 and genes involved in cell cycle including the M phase marker Cyclin B1. Comparison of Cyclin B1 expressing cells from GNF4877-treated islets to beta cells from DMSO-treated islets further revealed a significant increase expression of genes associated with full cell cycle progression and enrichment of Gene Ontology (GO) categories for proliferation. Conclusions: Since only a small subset of islet cells proliferate when stimulated with GNF4877, single-cell transcriptome sequencing allowed us to examine expression of genes co-regulated with known proliferation markers and will hopefully allow us to characterize beta cell subsets which are responsive to proliferation-associated therapies. Overall design: 84 GNF4877-treated and 86 DMSO-treated rat islet cells containing greater than 100,000 mapped sequencing reads per cell and having a single verified cell per port were compared
Inhibition of DYRK1A and GSK3B induces human β-cell proliferation.
No sample metadata fields
View SamplesWe performed RNA-Seq analysis of wildtype and three EPAS1-/- 786-O single cell clones generated by CRISPR/Cas9 to identify the HIF-2a-responsive genes in this cell line. Samples from wildtype 786-O cells treated with DMSO or HIF-2a antagonist compound C2 were also included in this analysis. Overall design: In this experiment, we analyzed the transcriptomic profiles of 2 replicates of wildtype (WT) EPAS1+/+ 786-O cells, 1 replicate for each of the three independent EPAS1-/- 786-O single cell clones, 1 replicate of WT-786-O cells treated with DMSO and 1 replicate of WT-786-O cells treated with 10uM HIF-2a antagonist C2.
A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis.
Subject
View SamplesWe used a reciprocal cross of Mus musculus and M. domesticus in which F1 males are sterile in one direction and fertile in the other direction, in order to associate expression differences with sterility.
Widespread over-expression of the X chromosome in sterile F₁hybrid mice.
Specimen part
View SamplesCarbonic anhydrase 1 (Car1), an early specific marker of the erythroid differentiation, has been used to distinguish fetal and adult erythroid cells since its production closely follows the - to -globin transition, but the molecular mechanism underlying transcriptional regulation of Car1 is unclear. Here, we show that Car1 mRNA decreases significantly when erythroid differentiation is induced in MEL cells. The Ldb1 protein complex including GATA1/SCL/LMO2 binds to the Car1 promoter in uninduced cells and reduced enrichment of the complex during differentiation correlates with loss of Car1 expression. Knockdown of Ldb1 results in a reduction of Ser2 phosphorylated RNA Pol II and Cdk9 at the Car1 promoter region, suggesting that Ldb1 is required for recruitment of Pol II as well as the transcription regulator P-TEFb to enhance elongation of Car1 transcripts. Taken together, these data show that Ldb1 forms a regulatory complex to maintain Car1 expression in erythroid cells.
Ldb1 regulates carbonic anhydrase 1 during erythroid differentiation.
Specimen part
View SamplesThe organs of multicellular species are comprised of cell types that must function together to perform specific tasks. One critical organ function is responding to internal or external change but little is known about how responses are tailored to specific cell types or coordinated among them on a global level. Here we use cellular profiling of five Arabidopsis root cell types in response to a limiting resource, nitrogen, to uncover a vast and predominantly cell-specific response that was largely undetectable using traditional methods. These methods reveal a new class of cell-specific nitrogen responses. As a proof-of-principle, we dissected one cell-specific response circuit that mediates nitrogen-induced changes in root branching from pericycle cells. Thus, cellular response profiling links gene modules to discrete functions in specific cell types.
Cell-specific nitrogen responses mediate developmental plasticity.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Elevated interferon gamma signaling contributes to impaired regeneration in the aged liver.
Sex, Treatment
View Samples