We examined the brain''s choroid plexus and myeloid cell populations isolated from the brain of 5XFAD Alzheimer''s disease transgenic mice following PD-1 blockade Overall design: Choroid plexus samples and myeloid cell populations were isolated from the brain of 5XFAD mice following PD-1 blockade, and sequenced. For choroid plexus samples, 5 mice were treated with anti-PD-1, 5 with IgG control, and 4 were left untreated. For the myeloid cells samples, myeloid cells sorted from the brains of 5XFAD mice according to a gating strategy that seperate microglia (CD11b+CD45-low) and monocytes-derived macrophages (CD11b+CD45-high).
PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer's disease.
Specimen part, Cell line, Treatment, Subject
View SamplesRNA-Seq data of micoglia isolated from brains of indicated mouse types. Overall design: Microglia were collected from perfused brains of mice based on FACS markers CD11b+ CD45int to lysis buffer
Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner.
Specimen part, Cell line, Treatment, Subject
View SamplesMicroglia play important roles in life-long brain maintenance and in pathology, but are also crucial in the developing central nervous system; yet their regulatory dynamics during development have not been fully elucidated. Genome-wide chromatin and expression profiling coupled with single-cell transcriptomic analysis throughout development reveal that microglia undergo three temporal developmental stages in synchrony with the brain: early, pre-, and adult microglia, which are under the control of distinct regulatory circuits. Knockout of the transcription factor MafB caused disruption of homeostasis in adulthood and increased inflammation. Environmental perturbations, such as the microbiome or prenatal immune activation, led to dysregulation of the developmental program, particularly in terms of inflammation. Together, our work identifies a stepwise developmental program of microglia integrating immune response pathways that may be associated with several neurodevelopmental disorders. Overall design: Yolk sac progenitors (CD45+CD11B+CX3CR1-GFP+), microglia from early brain (CD45+CD11B+CX3CR1-GFP+), and microglia from later stages (CD45intCD11BintCX3CR1-GFP+) were isolated from CX3CR1+ C57BL/6J mice or microglia from perturbation models (CD45intCD11Bint) from mice of C57BL/6J background
Microglia development follows a stepwise program to regulate brain homeostasis.
Specimen part, Cell line, Treatment, Subject
View SamplesEnterocytes assemble dietary lipids into chylomicron particles that are taken up by intestinal lacteal vessels and peripheral tissues. Although chylomicrons are known to assemble in part within membrane secretory pathways, the modifications required for efficient vascular uptake are unknown. We report that the transcription factor Pleomorphic adenoma gene-like 2 (PLAGL2) is essential for this aspect of dietary lipid metabolism. PlagL2-/- mice die from post-natal wasting owing to failure of fat absorption. Lipids modified in the absence of PlagL2 exit from enterocytes but fail to enter interstitial lacteal vessels. Dysregulation of enterocyte genes closely linked to intracellular membrane transport identified candidate regulators of critical steps in chylomicron assembly. PlagL2 thus regulates essential and poorly understood aspects of dietary lipid absorption and its deficiency represents an authentic animal model with implications for amelioration of obesity or the metabolic syndrome.
Loss of the PlagL2 transcription factor affects lacteal uptake of chylomicrons.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression.
Cell line
View SamplesWe sequenced mRNA from HCT116 p21-/- cells treated with Nutlin-3a, doxorubicin, or DMSO for 24 h. Overall design: Examination of mRNA levels from HCT116 p21-/- cells treated with Nutlin-3a, doxorubicin, or DMSO for 24 h using four replicates each.
Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks.
No sample metadata fields
View SamplesTranslation initiation factor eIF4E is overexpressed early in breast cancers in association with disease progression and reduced survival. Much remains to be understood regarding the role of eIF4E in human cancer. Using immortalized human breast epithelial cells, we report that elevated expression of elF4E translationally activates the TGF pathway, promoting cell invasion, loss of cell polarity, increased cell survival and other hallmarks of early neoplasia. Overexpression of eIF4E is shown to facilitate selective translation of integrin 1 mRNA, which drives the translationally controlled assembly of a TGF receptor signaling complex containing 31 integrins, -catenin, TGF receptor I, E-cadherin and phosphorylated Smads2/3. This receptor complex acutely sensitizes non-malignant breast epithelial cells to activation by typically sub-stimulatory levels of activated TGF. TGF can promote cellular differentiation or invasion and transformation. As a translational coactivator of TGF, eIF4E confers selective mRNA translation, reprogramming non-malignant cells to an invasive phenotype by reducing the set-point for stimulation by activated TGF. Overexpression of eIF4E may be a pro-invasive facilitator of TGF activity.
Eukaryotic Translation Initiation Factor 4E Is a Feed-Forward Translational Coactivator of Transforming Growth Factor β Early Protransforming Events in Breast Epithelial Cells.
Sex, Specimen part, Cell line
View SamplesTranscript dynamics in mitotic exit mutants in the S. cerevisiae BF264-15D strain background. We examined the extent to which periodic cell-cycle transcription persisted in cells arrested in anaphase with intermediate level of B-cyclins.
Reconciling conflicting models for global control of cell-cycle transcription.
No sample metadata fields
View SamplesBackground: MicroRNAs (miRNAs) are a family of small, non-coding single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. As such, they are believed to play a role in regulating the step-wise changes in gene expression patterns that occur during cell fate specification of multipotent stem cells. Here, we have studied whether terminal differentiation of C2C12 myoblasts is indeed controlled by lineage-specific changes in miRNA expression.
MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells.
Cell line
View SamplesFor more than a decade, microarrays have been a powerful and widely used tool to explore the transcriptome of biological systems. However, the amount of biological material from cell sorting or laser capture microdissection is much too small to perform microarray studies. To address this issue, RNA amplification methods have been developed to generate sufficient targets from picogram amounts of total RNA to perform microarray hybridisation. In this study, four commercial protocols for amplification of picograms amounts of input RNA for microarray expression profiling were evaluated and compared. The quantitative and qualitative performances of the methods were assessed. Microarrays were hybridised with the amplified targets and the amplification protocols were compared with respect to the quality of expression profiles, reproducibility within a concentration range of input RNA, and sensitivity.
Evaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profiling.
No sample metadata fields
View Samples