The histone acetyltransferase (HAT) Mof is essential for mouse embryonic stem cells (mESC) pluripotency and early development. Mof is the enzymatic subunit of two different HAT complexes, MSL (Male-Specific Lethal) and NSL (Non-specific lethal). The individual contribution of MSL and NSL complexes to transcription regulation in mESCs is not well understood. Our genome-wide analysis of MSL and NSL localization show that i) MSL and NSL bind to specific and common sets of expressed genes, ii) NSL binds at promoters, iii) while MSL binds in gene bodies. Knockdown of Msl1 leads to a global loss of histone H4K16ac indicating that MSL is the main HAT acetylating H4K16 in mESCs. MSL was enriched at many mESC-specific genes, but also at bivalent domains. Thus, NSL and MSL HAT complexes differentially regulate specific sets of expressed genes in mESCs. Furthermore, MSL is essential for the regulation of key mESC-specific and bivalent developmental genes.
Mof-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation.
No sample metadata fields
View SamplesGene expression profiling in dopaminergic brain structures of rats self-administering cocaine. Effect of histone deacetylase inhibition
Inhibition of histone deacetylases in rats self-administering cocaine regulates lissencephaly gene-1 and reelin gene expression, as revealed by microarray technique.
Sex, Specimen part, Treatment
View SamplesIntravenous Immunoglobulin (IVIg) is widely used as an immunomodulatory therapy. We have recently demonstrated that IVIg protects against airway hyper-reactivity (AHR) and inflammation in mouse models of allergic airway disease (AAD), associated with induction of Foxp3+ regulatory T cells (Treg). Using DEREG (DEpletion of REGulatory T cell) mice, in which endogenous Treg can be ablated with Diphtheria toxin (DTx) treatment, we demonstrate that IVIg generates a de novo population of induced Treg (iTreg) in the absence of endogenous Treg. IVIg-generated iTreg were sufficient for inhibition of ovalbumin-induced AHR in an antigen-driven murine model of AAD. In the absence of endogenous Treg, IVIg failed to confer protection against AHR and airway inflammation. Adoptive transfer of purified IVIg-generated iTreg prior to antigen challenge effectively prevented airway inflammation and AHR in an antigen-specific manner.
Peripherally Generated Foxp3<sup>+</sup> Regulatory T Cells Mediate the Immunomodulatory Effects of IVIg in Allergic Airways Disease.
Specimen part
View SamplesSystemic lupus erythematosous (SLE) is an autoimmune disease with an important clinical and biological heterogeneity. B lymphocytes appear central to the development of SLE which is characterized by the production of a large variety of autoantibodies and hypergammaglobulinemia. In mice, immature B cells from spontaneous lupus prone animals are able to produce autoantibodies when transferred into immunodeficient mice, strongly suggesting the existence of intrinsic B cell defects during lupus. In order to approach these defects in humans, we compared the peripheral B cell transcriptomes of quiescent lupus patients to normal B cell transcriptomes.
B cell signature during inactive systemic lupus is heterogeneous: toward a biological dissection of lupus.
Specimen part, Disease, Disease stage, Subject
View SamplesCoffinLowry Syndrome (CLS) is a syndromic form of mental retardation caused by loss of function mutations in the X-linked RPS6KA3 gene, which encodes Rsk2, a serine/threonine kinase involved in spatial memory. We analyzed hippocampal gene expression profiles in Rsk2-KO mice to identify changes in molecular pathways.
Transcriptome profile reveals AMPA receptor dysfunction in the hippocampus of the Rsk2-knockout mice, an animal model of Coffin-Lowry syndrome.
No sample metadata fields
View SamplesDendritic cells (DC) are the most potent antigen-presenting cells of the immune system. In lymph nodes (LN), they are also believed to dispose of apoptotic cells, a critical function usually achieved by macrophages (M) in other tissues. We report a population of tolerogenic M located in the T cell zone of LN. T zone M (TZM) are long lived M seeded after birth and slowly replaced by blood monocytes. We show that TZM but not DC act as the only professional scavengers clearing apoptotic cells in the LN T cell zone. Importantly, we demonstrate that TZM prevent the capture of apoptotic cells by DC and the associated potential noxious activation of T cell immunity. We thus propose a new model in which efferocytosis and T cell activation are uncoupled processes handled by TZM and DC respectively.
T Cell Zone Resident Macrophages Silently Dispose of Apoptotic Cells in the Lymph Node.
Specimen part
View SamplesOne of the key questions in developmental biology is how from universally shared molecular mechanisms and pathways, is it possible to generate organs displaying similar or complementary functions, with a wide range of different shapes or tissue organization? The dentition represents a valuable system to address the issues of differential molecular signatures generating specific tooth types. We performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.5) prior to recognizable tooth shape and cusp pattern.
Molars and incisors: show your microarray IDs.
Specimen part
View SamplesMouse embryonic stem (ES) cells remain pluripotent in vitro when grown in presence of Leukaemia Inhibitory Factor (LIF). LIF starvation leads to apoptosis of some of the ES-derived differentiated cells, together with p38a MAP kinase activation. Apoptosis, but not morphological cell differentiation, is blocked by a p38 inhibitor, PD 169316. To further understand the mechanism of action of this compound, we have identified its specific targets by microarray studies. We report on the global expression profiles of genes expressed at three days upon LIF withdrawal (d3) compared to pluripotent cells and of genes whose expression is modulated at d3 under anti-apoptotic conditions. We showed that at d3 without LIF cells express, earlier than anticipated, specialized cell markers and that when the apoptotic process was impaired, expression of differentiation markers was altered. In addition, functional tests revealed properties of anti-apoptotic proteins not to alter cell pluripotency and a novel role for metallothionein 1 gene which prevents apoptosis of early differentiated cells.
Apoptosis and differentiation commitment: novel insights revealed by gene profiling studies in mouse embryonic stem cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas.
Specimen part
View SamplesWe have identified SOX2 as a new oncogene and a likely driver of recurrent 3q26.3 amplifications in lung Squamous Cell Carcinoma. SOX2 is a crucial transcription factor implicated in Embryonic and Neural Stem Cells, that we found widely activatd in human lung SCC. This part of the study aimed at analyzing the transcriptomic consequences of SOX2 overexpression in a simple in vitro model (human lung squamous immortalized cells).
SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas.
Specimen part
View Samples