Background. Infections caused by Staphylococcus aureus are associated with significant morbidity and mortality and are an increasing threat not only in hospital settings. The expression of the staphylococcal virulence factor repertoire is known to be affected by the alternative sigma factor B (SigB). However, its impact during infection still is a matter of debate. Methods. Kidney tissue of controls or mice infected with S. aureus HG001 or its isogenic sigB mutant was analyzed by transcriptome profiling to monitor the host response, and additionally expression of selected S. aureus genes was monitored by RT-qPCR. Results. Direct transcript analysis by RT-qPCR revealed significant SigB activity in all mice infected with the wild type strain (WT), but not in its isogenic sigB mutant (p<0.0001). Despite a clear cut difference in the SigB-dependent transcription pattern of virulence genes (clfA, aur, and hla), the host reaction to infection (either WT or sigB mutant) was almost identical. Conclusions. Despite its significant activity in vivo, loss of SigB did not have an effect on the outcome of infection as well as on murine kidney gene expression pattern. Thus, these data support the role of SigB as virulence modulator rather than being a virulence determinant by itself.
The alternative sigma factor B modulates virulence gene expression in a murine Staphylococcus aureus infection model but does not influence kidney gene expression pattern of the host.
Sex, Specimen part
View SamplesStress is a powerful modulator of neuroendocrine, behavioral and immunological functions. After 4.5 days of repeated combined acoustic and restraint stress as a murine model of chronic psychological stress severe metabolic dysregulations became detectable in female BALB/c mice. Stress-induced alterations of metabolic processes that were found in a hepatic mRNA expression profiling were verified by in vivo analyses. Repeatedly stressed mice developed a hypermetabolic syndrome with severe loss of lean body mass, hyperglycemia, dyslipidemia, increased amino acid turn-over, and acidosis. This was associated with hypercortisolism, hyperleptinemia, insulin resistance, and hypothyroidism. In contrast, after a single acute stress exposure changes in expression of metabolic genes were much less pronounced and predominantly confined to gluconeogenesis, probably indicating that metabolic disturbances might be initiated already early but will only manifest in repeatedly stressed mice .Thus, in our murine model, repeated stress caused severe metabolic dysregulations leading to a drastic reduction of the individual's energy reserves. Under such circumstances stress may further reduce the ability to cope with new stressors such as infection or cancer.
Hypermetabolic syndrome as a consequence of repeated psychological stress in mice.
Sex, Age
View SamplesStress is a powerful modulator of neuroendocrine, behavioral and immunological functions. After 4.5 days of repeated combined acoustic and restraint stress as a murine model of chronic psychological stress severe metabolic dysregulations became detectable in female BALB/c mice. Stress-induced alterations of metabolic processes that were found in a hepatic mRNA expression profiling were verified by in vivo analyses. Repeatedly stressed mice developed a hypermetabolic syndrome with severe loss of lean body mass, hyperglycemia, dyslipidemia, increased amino acid turn-over, and acidosis. This was associated with hypercortisolism, hyperleptinemia, insulin resistance, and hypothyroidism. In contrast, after a single acute stress exposure changes in expression of metabolic genes were much less pronounced and predominantly confined to gluconeogenesis, probably indicating that metabolic disturbances might be initiated already early but will only manifest in repeatedly stressed mice .Thus, in our murine model, repeated stress caused severe metabolic dysregulations leading to a drastic reduction of the individual's energy reserves. Under such circumstances stress may further reduce the ability to cope with new stressors such as infection or cancer.
Hypermetabolic syndrome as a consequence of repeated psychological stress in mice.
Sex, Age
View SamplesStress is a powerful modulator of neuroendocrine, behavioral and immunological functions. After 4.5 days of repeated combined acoustic and restraint stress as a murine model of chronic psychological stress severe metabolic dysregulations became detectable in female BALB/c mice. Stress-induced alterations of metabolic processes that were found in a hepatic mRNA expression profiling were verified by in vivo analyses. Repeatedly stressed mice developed a hypermetabolic syndrome with severe loss of lean body mass, hyperglycemia, dyslipidemia, increased amino acid turn-over, and acidosis. This was associated with hypercortisolism, hyperleptinemia, insulin resistance, and hypothyroidism. In contrast, after a single acute stress exposure changes in expression of metabolic genes were much less pronounced and predominantly confined to gluconeogenesis, probably indicating that metabolic disturbances might be initiated already early but will only manifest in repeatedly stressed mice .Thus, in our murine model, repeated stress caused severe metabolic dysregulations leading to a drastic reduction of the individual's energy reserves. Under such circumstances stress may further reduce the ability to cope with new stressors such as infection or cancer.
Hypermetabolic syndrome as a consequence of repeated psychological stress in mice.
Sex, Age
View SamplesABSTRACT
Increased expression of bcl11b leads to chemoresistance accompanied by G1 accumulation.
No sample metadata fields
View SamplesABSTRACT
Bone marrow-derived macrophages from BALB/c and C57BL/6 mice fundamentally differ in their respiratory chain complex proteins, lysosomal enzymes and components of antioxidant stress systems.
Treatment
View SamplesC2C12 cells are mouse skeletal muscle cells. These cells were transfected with shRNA against FoxO1, FoxO3, and FoxO4. FoxO1, FoxO3, and FoxO4 are the known paralogues expressed in this cell line.
Codependent activators direct myoblast-specific MyoD transcription.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study.
Specimen part
View SamplesNuclear receptor Reverb alpha is a component of circadian rythm which could be evolved in cardioprotection strategy. We test if pharmacological modulation of these target could be suitable for cardioprotection after ischemia reperfusion injury
Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study.
Specimen part
View SamplesAffymetrix HG_U133 array sets (A and B chips) were used to determine the whole genome transcription profile of clinically documented and neuropathologically confirmed cases of sporadic Parkinson's disease as well as controls.
Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson's disease.
No sample metadata fields
View Samples