Gene expression was measured on the Affymetrix platform in primary xenografts, xenograft-derived cell lines, secondary xenografts, normal lung, and primary tumors obtained from chemotherapy naive Small Cell Lung Cancer (SCLC). The SCLC primary xenografts were serially propagated in vivo in immunodeficient mice. Cell lines were derived from each xenograft and grown for 6 months using conventional tissue culture conditions. Secondary xenografts were obtained from cell cultures by re-implantation in immunodeficient mice. Such SCLC laboratory models were analyzed along with conventional SCLC cell lines and the derivative secondary xenografts, with normal lung and primary tumors, to assess irreversible gene expression changes induced by culturing conditions.
A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro.
Disease, Disease stage, Cell line
View SamplesSnapshot of translation in mammalian cells that are depleted of polyamines or replete with polyamines. Hek293T cells treated with DFMO or Spermidine. Overall design: DFMO vs. Spermidine treatment
Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing.
Disease, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cloning and variation of ground state intestinal stem cells.
Specimen part, Treatment
View SamplesDespite major advances with embryonic and induced pluripotent stem cells or lineage-committed, p63-expressing stem cells of stratified epithelia, we know less about the indigenous stem cells of the gastrointestinal tract, pancreas, liver, and other columnar epithelia which collectively resist cloning in their elemental states. Here we demonstrate the cloning of highly immature epithelial stem cells from defined regions of the human intestine and colon. We show that single cell-derived pedigrees can be propagated indefinitely while often sustaining minimal copy number and sequence variation. Despite prolonged cultivation, these pedigrees from disparate regions of the intestinal tract respond to identical differentiation signals by formation of epithelia with eponymous structural and gene expression features. These data suggest developmental patterning of cell-autonomous commitment programs in stem cells that enforce specialization along the gastrointestinal tract and predict the utility of these cells in disease modeling and regenerative medicine.
Cloning and variation of ground state intestinal stem cells.
Specimen part
View SamplesClostridium difficile (Cd) is a gram-positive, spore-forming bacterium and the primary cause of nosocomial diarrhea and pseudomembranous colitis. The pathogenicity of Cd has been linked to its production of TcdA and TcdB. While they cause fluid secretion, inflammation, and colonic damage, their respective and synergistic roles have been difficult to ascertain. In infection animal model, TcdB has been demonstrated to be a key virulence factor, and TcdB causes obvious damage in human and porcine colonic explants. Using the colonic epithelia derived from cloned colonic stem cells, we have developed a model to test the response to TcdB. Epithelia generated in air-liquid interface cultures from cloned transverse colon stem cells were challenged with TcdB at different concentrations and durations.
Cloning and variation of ground state intestinal stem cells.
Specimen part, Treatment
View SamplesDespite major advances with embryonic and induced pluripotent stem cells or lineage-committed, p63-expressing stem cells of stratified epithelia, we know less about the indigenous stem cells of the gastrointestinal tract, pancreas, liver, and other columnar epithelia which collectively resist cloning in their elemental states. Here we demonstrate the cloning of highly immature epithelial stem cells from defined regions of the human intestine and colon. In this study, we have isolated ileal stem cells and performed air-liquid interface method to induce differentiation of human ileal stem cells. The differentiated structure showed villi-like epithelia which contains enterocytes, goblet cells, endocrine cells and paneth cells.
Cloning and variation of ground state intestinal stem cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation.
Sex, Specimen part
View SamplesWe report the application of Affymetrix technology for high-throughput profiling of the transcriptome of the rheumatoid arthritis (RA) rat model induced by collagen type II (CIA), with acupuncture, Methotrexate, Isofluorane anesthetic and placebo treatments, as well as the healthy control.
Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation.
Sex, Specimen part
View SamplesWe report the application of Illumina Hiseq2000 sequencing technology for high-throughput miRNA profiling of the rheumatoid arthritis (RA) rat model induced by collagen type II (CIA), with acupuncture and placebo treatments. Overall design: The experiment is designed as 2 arms: epidermal needle manipulation (AP/MEC) and placebo (PLA, used as control) on CIA induced rheumatoid arthritis (RA) rats. Muscle tissue samples sampling was carried out before any therapy in RA rats (RA_T0), and after at 1 hour and 34 days of therapeutic treatments for both AP and PLA. From all the 10 blood collected samples (2 replicates for each group, for each timepoint), total RNA were extracted. Finally, purified RNA were analyzed using illumina hiseq 2000).
Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation.
No sample metadata fields
View SamplesWe report the application of Affymetrix technology for high-throughput profiling of the transcriptome of the rheumatoid arthritis (RA) rat model induced by collagen type II (CIA), with acupuncture and Methotrexate+acupuncture treatment, as well as epidermal needle manipulation on healthy rat model.
Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation.
Sex, Specimen part
View Samples