Cotton is one of the most commercially important Fiber crops in the world and used as a source for natural textile Fiber and cottonseed oil. The fuzzless-lintless ovules of cotton mutants are ideal source for identifying genes involved in Fiber development by comparing with Fiber bearing ovules of wild-type. To decipher molecular mechanisms involved in Fiber cell development, transcriptome analysis has been carried out by comparing G. hirsutum cv. MCU5 (wild-type) with its fuzzless-lintless mutant (MUT). Cotton bolls were collected at Fiber initiation (0 dpa/days post anthesis), elongation (5, 10 and 15 dpa) and secondary cell wall synthesis stage (20 dpa) and gene expression profiles were analyzed in wild-type and MUT using Affymetrix cotton GeneChip Genome array.
Functional genomics of fuzzless-lintless mutant of Gossypium hirsutum L. cv. MCU5 reveal key genes and pathways involved in cotton fibre initiation and elongation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes.
Specimen part, Treatment
View SamplesTranscriptome analysis in cotton during fibre development stages.
Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes.
Treatment
View SamplesTranscriptome analysis in cotton under drought stress.
Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes.
Specimen part, Treatment
View SamplesHuman peripheral monocytes have been categorized into three subsets based on differential expression levels of CD14 and CD16. However, the factors that influence the distribution of monocyte subsets and the roles which each subset plays in autoimmunity are not well studied. To compare the gene expression profiling 1) on intermediate monocytes CD14++CD16+ monocytes between healthy donors and autoimmune uveitis patients and 2) among 3 monocyte subsets in health donors, here we purified circulating intermediate CD14++CD16+ monocytes from 5 patients with autoimmune uveitis (labeled as P1-5) and 4 healthy donors (labeled as HD1-4) by flow cytometry and isolated total RNA to proceed microarray assay. In addition, we also purified CD14+CD16++ (non-classical monocytes) and CD14++CD16- (classical monocytes) from 4 healthy donors to do microarray. We demonstrate that CD14++CD16+ monocytes from patients and healthy control donors share a similar gene expression profile. The CD14+CD16++ cells (non-classical monocytes) display the most distinctive gene expression profiling when compared to intermediate CD14++CD16+ monocytes and classical CD14++CD16- monocytes.
CD14++CD16+ Monocytes Are Enriched by Glucocorticoid Treatment and Are Functionally Attenuated in Driving Effector T Cell Responses.
Specimen part, Disease stage, Subject
View SamplesAim was to identify cellular factors that regulate HPV-16 late gene expression at the level of RNA processing
Heterogeneous Nuclear Ribonucleoprotein C Proteins Interact with the Human Papillomavirus Type 16 (HPV16) Early 3'-Untranslated Region and Alleviate Suppression of HPV16 Late L1 mRNA Splicing.
Specimen part, Cell line
View SamplesGene expression changes were analyzed in 2 acute lymphoblastic leukemia cell lines treated with the GSK126 EZH2 inhibitor using Affymetrix Human Genome U133 Plus 2.0 arrays.
A687V EZH2 is a driver of histone H3 lysine 27 (H3K27) hypertrimethylation.
Cell line, Treatment, Time
View SamplesNoncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease and to reveal uncharacterized aspects of tumor biology. Here we discover 121 unannotated prostate cancer–associated ncRNA transcripts (PCATs) by ab initio assembly of high-throughput sequencing of polyA+ RNA (RNA-Seq) from a cohort of 102 prostate tissues and cells lines. We characterized one ncRNA, PCAT-1, as a prostate-specific regulator of cell proliferation and show that it is a target of the polycomb repressive complex 2 (PRC2). We further found that patterns of PCAT-1 and PRC2 expression stratified patient tissues into molecular subtypes distinguished by expression signatures of PCAT-1–repressed target genes. Taken together, our findings suggest that PCAT-1 is a transcriptional repressor implicated in a subset of prostate cancer patients. These findings establish the utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes. Overall design: 21 prostate cell lines sequenced on the Illumina Genome Analyzer and GAII. Variable number of replicates per sample. RNA-Seq data from prostate cancer tissues used in this study will be made available on dbGAP.
Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression.
No sample metadata fields
View SamplesRegeneration of transgenic cells remains a major obstacle to research and commercial deployment of transgenic plants for most species.
Genome scale transcriptome analysis of shoot organogenesis in Populus.
Sex
View SamplesMucinous tubular and spindle cell carcinoma (MTSCC) is a relatively rare subtype of renal cell carcinoma with distinctive morphologic and cytogenetic features. Here we carry out whole exome and transcriptome sequencing of a multi-institutional cohort of MTSCC (n=22). We demonstrate the presence of either biallelic loss of Hippo pathway tumor suppressor genes (TSGs) and/or evidence of alteration of Hippo pathway genes in 85% of samples. PTPN14 (31%) and NF2 (22%) were the most commonly implicated Hippo pathway genes while other genes such as SAV1 and HIPK2 were also involved in a mutually exclusive fashion. Mutations in the context of recurrent chromosomal losses amounted to bi-allelic alterations in these TSGs. As a read-out of Hippo pathway inactivation, a majority of cases (90%) exhibited increased nuclear YAP1 protein expression. To identify transcriptional targets of the Hippo pathway in kidney we performed PTPN14 knockdown followed by RNA-seq in 2 kidney cancer cell lines (CAKI-1 and A-704) and a normal kidney epithelial cell line (HK-2). PTPN14 siRNAs were first functionally validated in a MCF-7 TEAD reporter luciferase stable cell line. Both siRNAs showed comparable knockdown efficiency and significantly increased luciferase reporter activity. In 2 of the kidney cell lines PTPN14 knockdown increased cell proliferation compared to non-target controls. While we observed excellent correlation between genes dysregulated by either PTPN14 or LATS1 knockdown within each cell line (HK2, CAKI-1 and A704), the overlap across the 3 cell lines was only 23 genes. Further, these 23 genes did not show concordant differential expression in MTSCC tumors. Overall, these results illustrate the marked tissue specificity of Hippo pathway targets.Finally, taken together, nearly all cases of MTSCC exhibit some evidence of Hippo pathway dysregulation. Overall design: Cell lines (CAKI-1, HK2 or A704) were either transfected with 2 independent siRNAs or non-target controls. Forty eight hours post transcription total RNA was isolated and subjected to RNA-seq analysis
Biallelic Alteration and Dysregulation of the Hippo Pathway in Mucinous Tubular and Spindle Cell Carcinoma of the Kidney.
Specimen part, Disease, Disease stage, Cell line, Subject
View Samples