High-throughput sequencing of mRNA from mouse lung infected with 1918 pandemic influenza virus revealed that reactive oxygen species scavenger EUK-207 treatment resulted in decreased expression of inflammatory response genes and increased lung metabolic and repair responses.
Treatment with the reactive oxygen species scavenger EUK-207 reduces lung damage and increases survival during 1918 influenza virus infection in mice.
No sample metadata fields
View SamplesPrevious studies have revealed that UV-stimulation of a variety of cells leads to activation of the EGF receptor, induction of Egr1, growth inhibition and apoptosis. On the other hand both Egr1 and EGF receptor activation are implicated in promoting the progression of prostate cancer. We treated M12 tumorigenic prostate epithelial cells which express little Egr1 with UV irradiation which rapidly activated the EGF receptor and elevated Egr1. Treatment with specific EGFR and ERKI/II inhibitors (PD153035 and UO126, respectively) confirmed that the upregulation of Egr1 was downstream of EGFR and ERKI/II Map kinase pathway. ChIP on chip experiments using Egr1 antibody identified 288 significantly bound promoters upon UV stimulation. Of these target genes, 40% had consensus Egr1 site in their promoters, considerably greater than that expected by chance (p < 0.005). The array binding results were validated by PCR analysis of 25 genes using DNA from conventional IP experiment. Affymetrix gene expression analysis of UV treated and control cells confirmed that a significant number of these bound promoters showed gene expression changes. Addition of siRNA to Egr1 confirmed that the gene expression changes were dependent upon Egr1 expression. Addition of EGF led to similar expression changes for nine tested genes. Proliferation and apoptosis assays confirmed that M12 cells undergo growth arrest and apoptosis following UV irradiation. Moreover, addition of EGF also promoted significant growth inhibition. These results indicate the M12 cells undergo a EGF receptor dependent apoptosis response upon UV-stimulation and that Egr1 mediates the regulation of numerous genes downstream of the EGF receptor that are associated with this response.
Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by ChIP-on-chip.
No sample metadata fields
View SamplesIn an ongoing translational research program involving microarray-based expression profiles in pediatric septic shock, we have now conducted longitudinal studies focused on the temporal expression profiles of canonical signaling pathways and gene networks. Genome-level expression profiles were generated from whole blood-derived RNA samples of children with septic shock (n = 30 individual patients) corresponding to days 1 and 3 of admission to the pediatric intensive care unit. Based on sequential statistical and expression filters, day 1 and day 3 of septic shock were characterized by differential regulation of 2,142 and 2,504 gene probes, respectively, relative to normal control patients. Venn analysis demonstrated 239 unique genes in the day 1 data set, 598 unique genes in the day 3 data set, and 1,906 genes common to both data sets. Analyses targeted toward derivation of biological function from these data sets demonstrated time-dependent, differential regulation of genes involved in multiple canonical signaling pathways and gene networks primarily related to immunity and inflammation. Notably, multiple and distinct gene networks involving T cell- and MHC antigen-related biological processes were persistently downregulated from day 1 to day 3. Further analyses demonstrated large scale and persistent downregulation of genes corresponding to functional annotations related to zinc homeostasis. These data represent the largest reported cohort of patients with septic shock, which has undergone longitudinal genome-level expression profiling. The data further advance our genome-level understanding of pediatric septic shock and support novel hypotheses that can be readily tested at both the experimental and translational levels.
Genome-level longitudinal expression of signaling pathways and gene networks in pediatric septic shock.
No sample metadata fields
View SamplesGoal of the experiment: To identify correlated genes, pathways and groups of patients with systemic inflammatory response syndrome and septic shock that is indicative of biologically important processes active in these patients.
Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome.
No sample metadata fields
View SamplesIn autoimmune diseases, accumulation of activated leukocytes correlates with inflammation and disease progression, and therefore, disruption of leukocyte trafficking is an active area of research. The protein kinase Tpl2 (MAP3K8) regulates leukocyte inflammatory responses and is also being investigated for therapeutic inhibition during autoimmunity. Herein, we addressed the contribution of Tpl2 to the regulation of macrophage chemokine and chemokine receptor expression and subsequent migration in vivo using a mouse model of Tpl2 ablation. We found that gene expression of the chemokine ligands CCL2, CCL7, CXCL2, and CXCL3 as well as the chemokine receptors CCR1 and CCR5 were reduced in macrophages from the bone marrow and peritoneal cavities of tpl2-/- mice following stimulation with LPS. LPS stimulation repressed chemokine receptor expression of CCR1, CCR2 and CCR5. Notably, LPS-induced repression of CCR1 and CCR5 was significantly enhanced in Tpl2-deficient macrophages and was observed to be dependent upon Erk activation and independent of PI3K and mTOR signaling. Consistent with alterations in chemokine and chemokine receptor expression, tpl2-/- macrophages were defective in trafficking to the peritoneal cavity following thioglycollate-induced inflammation. Overall, this study demonstrates a Tpl2-dependent mechanism for macrophage expression of both chemokine receptors and their ligands and provides further insight into how Tpl2 inhibition may disrupt inflammatory networks in vivo.
Tumor progression locus 2 (Tpl2) kinase promotes chemokine receptor expression and macrophage migration during acute inflammation.
Treatment
View SamplesBackground
Excessive Cytolytic Responses Predict Tuberculosis Relapse After Apparently Successful Treatment.
Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach.
Specimen part
View SamplesPlatelet reactivity (PR) in cardiovascular (CV) patients is variable between individuals and modulates clinical outcome. However, the determinants of platelet reactivity are largely unknown. Integration of data derived from high-throughput omics technologies may yield novel insights into the molecular mechanisms that govern platelet reactivity. The aim of this study was to identify candidate genes modulating platelet reactivity in aspirin-treated cardiovascular patients PR was assessed in 110 CV patients treated with aspirin 100mg/d by aggregometry using several agonists. 12 CV patients with extreme high or low PR were selected for transcriptomics, proteomics and miRNA analysis.
New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach.
Specimen part
View SamplesDespite wide scale vaccination with Mycobacterium bovis BCG, the prevalence of tuberculosis remains high, reflecting the global variable efficacy of this vaccine against adult pulmonary TB. Characterisation of different immune responses to M. tuberculosis and M. bovis BCG would increase understanding of pathology following M. tuberculosis infection or reactivation, and would facilitate the rational design of a new vaccine. Gene expression profiling was conducted on samples from diluted whole blood cultures from three healthy donors following incubation with live mycobacteria for six days. Approximately 8,000 gene entities were at least two-fold up- or down- regulated by the mycobacteria, and both mycobacteria induced similar expression changes in approximately 2,300 genes. Strikingly, many genes exhibited qualitatively different expression patterns, with over 1,000 genes up-regulated in response to M. bovis BCG but not changed by M. tuberculosis. Gene Ontology analysis revealed that the genes which failed to upregulate in M. tuberculosis-infected cultures included a large proportion of genes with lysosomal function. The inhibited up-regulation of expression of IFN--inducible protein 30, acid phosphatase 2, cathepsin B and GM2 ganglioside activator was verified in samples from six biologically independent donors by qRT-PCR. The failure to up-regulate these genes in response to M. tuberculosis may constitute an immune evasion mechanism, preventing intracellular killing and antigen presentation.
Excessive Cytolytic Responses Predict Tuberculosis Relapse After Apparently Successful Treatment.
Specimen part
View SamplesBackground Accurate assessment of treatment efficacy would facilitate clinical trials of new anti-tuberculosis drugs. TB patients exhibit altered peripheral immunity which reverts during successful treatment. We hypothesised that these changes could be observed in whole blood transcriptome profiles. Methods Ex vivo blood samples from 27 pulmonary TB patients were assayed at diagnosis and during conventional treatment. RNA was processed and hybridised to Affymetrix GeneChips, to determine expression of over 47,000 transcripts. Findings There were significant changes in expression of over 4,000 genes during treatment. Rapid, large scale changes were detected, with down-regulated expression of ~1,000 genes within the first week, including inflammatory markers such as the complement components C1q and C2. This was followed by slower changes in expression of different networks of genes, including a later increase in expression of B cell markers, transcription factors and signalling molecules. Interpretation The expression of many genes is drastically altered during TB disease, with components of the humoral immune response being markedly affected. The treatment-induced restoration reflects the simultaneous suppression and activation of different immune responses in TB. The rapid initial down-regulation of expression of inflammatory mediators coincides with rapid killing of actively dividing bacilli, whereas slower delayed changes occur as drugs act on dormant bacilli and as lung pathology resolves. Measurement of biosignatures during clinical trials of new drugs could be useful predictors of rapid bactericidal or sterilizing drug activity.
Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response.
Specimen part, Disease, Subject, Time
View Samples