The immune system can both promote and suppress cancer. Chronic inflammation and proinflammatory cytokines such as interleukin (IL)-1 and IL-6 are considered tumor-promoting. In contrast, the exact nature of protective antitumor immunity remains obscure. In this study, we have quantified locally secreted cytokines during primary immune responses against myeloma and B-cell lymphoma in mice. Strikingly, successful cancer immunosurveillance mediated by tumor-specific CD4+ T cells was consistently associated with elevated local levels of both proinflammatory (IL-1aplha, IL-1beta, and IL-6) and T helper 1 (Th1)-associated cytokines (interferon-alpha, IL-2, IL-12). Cancer eradication was achieved by a collaboration between tumor-specific Th1 cells and tumor-infiltrating, antigen-presenting macrophages. Th1 cells induced secretion of IL-1? and IL-6 by macrophages. Th1-derived interferon-? was shown to render macrophages directly cytotoxic to cancer cells, and to induce macrophages to secrete the angiostatic chemokines CXCL9/MIG and CXCL10/IP-10. Thus, inflammation, when driven by tumor-specific Th1 cells, may prevent rather than promote cancer.
Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer.
Specimen part
View SamplesIslets are known to respond to changes in ambient glucose. To quantify the transcriptome-wide changes in ambient glucose, we compared transcriptome of islets exposed to low and high glucose. Overall design: Isolated islets from wild type male mice. Islets from adult males were pooled, cultured overnight in RPMI containing 11 mM glucose. The next day, all islets were starved in RPMI containing 2.8 mM glucose for 2 hours before stimulation with 2.8 mM glucose or 16.8 mM glucose for 12 hours. Islets were lysed in Trizol for RNA isolation and library construction.
The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression.
No sample metadata fields
View SamplesAn unanticipated feature of the human neonatal CD4 T cell response is a robust capacity to produce CXCL8. However, this ''innate-like'' function dissipates with age and is scarce in the adult. Here, we investigated the fate of CD4+CXCL8+ cells and their transition into conventional adaptive T cells. We show that CXCL8 is imprinted on immature thymocytes prior to TCR signalling and is maintained in T cell committed thymic progenitors and recent thymic emigrants (RTEs) of adults as well as neonates. Hence, rather than being unique to neonates, CXCL8-producing CD4+ T cells decrease with age in humans (and in humanised mice) owing to the decline in thymic output, coupled with the cells' peripheral expansion. By cloning of CXCL8+CD4+ cells from cord blood, we were able to track effector function within daughter cells and demonstrate that these cells can convert to IFN-g producing cells. In sum, we provide direct evidence that 'innate like' CXCL8-producing CD4+ T cells emerge from the thymus and can transition into conventional adaptive Th1 cells Overall design: Examination of RNA-Seq count data from 96 single cells
Adaptive from Innate: Human IFN-γ<sup>+</sup>CD4<sup>+</sup> T Cells Can Arise Directly from CXCL8-Producing Recent Thymic Emigrants in Babies and Adults.
Specimen part, Subject
View SamplesRodent models are widely used to study diabetes. Yet, significant gaps remain in our understanding of mouse islet physiology. We generated comprehensive transcriptomes of mouse delta, beta and alpha cells using two separate triple transgenic mouse models generated for this purpose. This enables systematic comparison across thousands of genes between the three major endocrine cell types of the islets of Langerhans whose principal hormones control nutrient homeostasis. Overall design: FACS purified delta or alpha cells and beta cells from the same islets. Islets were isolated from triple transgenic offspring of a cross between mIns1-H2b-mCherry (Jax # 028589) and either Sst-Cre (delta) or Gcg-cre (alpha) cells and a floxed YFP allele to label delta or alpha cells, respectively. Islets from replicate groups of 10 to 12 triple transgenic animals for each group were pooled by sex to obtain sufficient material. Pooled islets were dissociated, sorted and collect in Trizol for RNA isolation and library construction.
Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets.
Sex, Specimen part, Subject
View SamplesExperiment to understand relationships between sheep rumen wall transcriptome and microbial methane emissions Overall design: RNA seq of ventral rumen wall of Australian sheep
Across-Experiment Transcriptomics of Sheep Rumen Identifies Expression of Lipid/Oxo-Acid Metabolism and Muscle Cell Junction Genes Associated With Variation in Methane-Related Phenotypes.
Subject
View SamplesPrenatal exposure to maternal stress and depression has been identified as a risk factor for adverse behavioral and neurodevelopmental outcomes in early childhood. However, the molecular mechanisms through which maternal psychopathology shapes offspring development remain poorly understood. We analyzed transcriptome-wide gene expression profiles of 149 UCB samples from neonates born to mothers with prenatal PTSD (n=20), depression (n=31) and PTSD with comorbid depression (PTSD/Dep; n=13), compared to neonates born to carefully matched trauma exposed controls without meeting PTSD criteria (TE; n=23) and healthy mothers (n=62). We also evaluated physiological and developmental measures in these infants at birth, six months and twenty-four months. A multistep analytic approach was used that specifically sought to: 1) identify dysregulated genes, molecular pathways and discrete groups of co-regulated gene modules in UCB associated with prenatal maternal psychopathologies; and 2) to determine the impact of perinatal PTSD and depression on early childhood development outcomes.
Gene expression in cord blood links genetic risk for neurodevelopmental disorders with maternal psychological distress and adverse childhood outcomes.
Specimen part
View SamplesA time course of infection of the alphavirus Sindbis virus (SINV) was used to investigate the presence of viral specific vsRNA and the changes in miRNAs profiles in human embryonic kidney 293 cells (HEK293) by high throughput DNA sequencing. Deep sequencing of small RNAs early in SINV infection (4 and 6 hpi) showed low abundance (0.8%) of viral specific RNAs (vsRNAs) , with a random uniform distribution not typical of Dicer products, suggesting they arise from non-specific degradation. Sequencing showed little variation of cellular microRNAs (miRNAs) at 4 and 6 hpi compared to uninfected cells. Twelve miRNAs exhibiting some minor differential expression by sequencing, showed insignificant modulation by Northern blot analysis. Overall design: RNA was isolated from mock infected and SINV inoculated HEK 293 cells at 4hpi and 6hpi cDNA libraries were generated for the small RNA (sRNA) content of the cells and sequenced using Illumina GA II, which yielded between 29.1M and 30.5M reads per sample
Small RNA analysis in Sindbis virus infected human HEK293 cells.
Specimen part, Cell line, Subject
View SamplesPersistent bronchial dysplasia (BD) is associated with increased risk of developing invasive squamous cell carcinoma (SCC) of the lung. We hypothesized that differences in gene expression profiles between persistent and regressive BD would identify cellular processes that underlie progression to SCC. RNA expression arrays (Affymetrix Hu 1.0) comparing baseline biopsies from 32 bronchial sites that persisted/progressed to 31 regressive sites showed 395 differentially expressed genes (ANOVA, FDR</=0.05). Thirty-one pathways showed statistically significant evidence of altered activity between the two groups. Multiple pathways were associated with cell cycle control/proliferation, inflammation, or epithelial differentiation/cell-cell adhesion. Polo-like kinase 1 (PLK1) was associated with multiple cell cycle pathways. Cultured persistent BD cells showed increased PLK1 expression, and following treatment with PLK1 inhibitor, showed induction of apoptosis, G2/M phase arrest and decreased proliferation compared to untreated cells. These effects were not seen in normal or regressive BD cultures. Inflammatory pathway activity was decreased in persistent BD and the presence of an inflammatory infiltrate was more common in regressive BD. Regressive BDs were also associated with trends toward overall increases in macrophages and T-lymphocytes and altered polarization of these inflammatory cell subsets. Increased desmoglein 3 and plakoglobin expression was associated with higher grade and persistence of BD. The results identify alterations in cell cycle control, inflammatory activity, and epithelial differentiation/cell-cell adhesion in the persistent subset of BDs that are associated with high risk for progression to invasive SCC. These pathways may provide strong markers of risk and effective targets for lung cancer prevention.
Altered Cell-Cycle Control, Inflammation, and Adhesion in High-Risk Persistent Bronchial Dysplasia.
Age, Specimen part
View SamplesWe performed single-cell mRNA-Seq on wild-type mouse keratinocytes co-cultured with keratinocytes in which beta-catenin was activated. We identified seven distinct cell states in cultures that had not been exposed to the beta-catenin stimulus. Using temporal single-cell analysis we reconstruct the cell fate changes induced by neighbor Wnt activation. Gene expression heterogeneity was reduced in neighboring cells and this effect was most dramatic for protein synthesis associated genes. The changes in gene expression were accompanied by a shift from a quiescent to a more proliferative stem cell state. By integrating imaging and reconstructed sequential gene expression changes during the state transition we identified transcription factors, including Smad4 and Bcl3, that were responsible for effecting the transition in a contact-dependent manner. Our data indicate that non cell autonomous Wnt/beta-catenin signaling decreases transcriptional heterogeneity and further our understanding of how epidermal Wnt signaling orchestrates regeneration and self-renewal. Overall design: Comparison of cells exposed to Wnt activated neighbors versus unactivated.
Epidermal Wnt signalling regulates transcriptome heterogeneity and proliferative fate in neighbouring cells.
Specimen part, Treatment, Subject
View SamplesMrhl is a non coding RNA identified from mouse chromosome 8. It is a 2.4kb poly adenylated, nuclear restricted RNA expressed in multiple tissues. The 2.4 kb RNA also undergoes a nuclear processing event mediated through Drosha that generates an 80nt intermediate RNA. This study was aimed at understanding the functiion of mrhl by silencing the mrhl RNA in the mouse spermatogonial cells using a pool of siRNAs targeted against the mrhl and analyse the global gene expression change using Affymetrix mouse expression array. The mRNAs that showed significant change in expression in mrhl siRNA treated cells against control were studied further for their biological significance with respect to mrhl silencing.
mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells.
Specimen part, Cell line
View Samples