Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor which accepts chloropyridinyl- and chlorothiazolyl- analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been specifically defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA) associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl- neonicotinoids induce SA responses associated with enhanced stress tolerance.
Neonicotinoid insecticides induce salicylate-associated plant defense responses.
Age, Specimen part
View SamplesHematopoietic progenitor and stem cells from bone marrow have been sorted by FACS (LSK, Lineage -, Sca1 + and cKit +) and co-culture during 18h without cytokines with or without extracellular vesicles (EV) secreted by AFT stromal cells.
Extracellular vesicles of stromal origin target and support hematopoietic stem and progenitor cells.
Specimen part
View SamplesPaneth cells recide in the intestinal crypt bottom and are part of the innate immunity and of the intestinal stem cell niche.
mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.
Age, Specimen part
View SamplesRNA was purified cancer cell lines. The "SAMPLE_ID" sample characteristic is a sample identifier internal to Genentech. The ID of this project in Genentech's ExpressionPlot database is PRJ0013114 Overall design: RNA from NSCLC cell lines after treatment with either DMSO, GDC-0973, AZ-628 or the combination of AZ-628 and GDC-0973 all at 0.1 micro-molar concentration.
Pharmacological Induction of RAS-GTP Confers RAF Inhibitor Sensitivity in KRAS Mutant Tumors.
Cell line, Treatment, Subject
View SamplesSmall RNAs (sRNA) that act by base pairing with trans-encoded mRNAs modulate metabolism in response to a variety of environmental stimuli. Here, we describe an Hfq-binding sRNA (FnrS) whose expression is induced upon a shift from aerobic to anaerobic conditions and which acts to down regulate the levels of a variety of mRNAs encoding metabolic enzymes. Anaerobic induction in minimal medium depends strongly on FNR but is also affected by ArcA and CRP. Whole genome expression analysis showed that the levels of at least 32 mRNAs are down regulated upon FnrS overexpression, 15 of which are predicted to base pair with FnrS by TargetRNA. The sRNA is highly conserved across its entire length in numerous enterobacteria, and mutation analysis revealed that two separate regions of FnrS base pair with different sets of target mRNAs. The majority of the target genes previously reported to be down regulated in an FNR-dependent manner lack recognizable FNR binding sites. We thus suggest that FnrS extends the FNR regulon and increases the efficiency of anaerobic metabolism by repressing the synthesis of enzymes that are not needed under these conditions.
Reprogramming of anaerobic metabolism by the FnrS small RNA.
No sample metadata fields
View SamplesGene expression profiling in soybean under aluminum stress: genes differentially expressed between Al-tolerant and Al-sensitive genotypes.
Mechanisms of magnesium amelioration of aluminum toxicity in soybean at the gene expression level.
Specimen part, Treatment
View SamplesGene expression profiling in soybean under aluminum stress: mechanisms of magnesium amelioration of aluminum toxicity at gene expression level.
Mechanisms of magnesium amelioration of aluminum toxicity in soybean at the gene expression level.
Specimen part, Treatment
View SamplesGene expression profiling in soybean under aluminum stress: Transcriptome response to Al stress in roots of Al-tolerant genotype (PI 416937).
Identification of Aluminum Responsive Genes in Al-Tolerant Soybean Line PI 416937.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome Wide Mapping of NR4A Binding Reveals Cooperativity with ETS Factors to Promote Epigenetic Activation of Distal Enhancers in Acute Myeloid Leukemia Cells.
Cell line, Treatment
View SamplesNR4As are critical tumor suppressors of acute myeloid leukemia (AML) whose expression is broadly silenced in leukemia initiating cell enriched populations from human patients relative to normal hematopoietic stem/progenitor cells. Rescued NR4A expression in human AML cells inhibits proliferation and reprograms AML gene signatures via transcriptional mechanisms that remain to be elucidated. By intersecting an acutely regulated, NR4A1 dependent transcriptional profile with genome wide NR4A binding distribution, we now identify an NR4A targetome of 685 genes that are directly regulated by NR4A1. We show that NR4As regulate gene transcription primarily through interaction with distal enhancers that are co-enriched for both NR4A1 and ETS transcription factor motifs. Using a subset of NR4A activated genes, we demonstrate that the ETS factors ERG and FLI-1 are required for activation of NR4A bound enhancers and NR4A target gene induction. NR4A1 dependent recruitment of ERG and FLI-1 promotes binding of p300 histone acetyl transferase to activate NR4A bound enhancers. These findings disclose novel epigenetic mechanisms by which NR4As and ETS factors cooperate to drive NR4A dependent gene transcription in human AML cells.
Genome Wide Mapping of NR4A Binding Reveals Cooperativity with ETS Factors to Promote Epigenetic Activation of Distal Enhancers in Acute Myeloid Leukemia Cells.
Cell line, Treatment
View Samples