The ubiquitin proteasome system (UPS) is known to possess important regulatory functions in the immune response. To gain a better and first comprehensive insight into the mechanisms underlying the conversion of immature to mature DC in terms of the expression of UPS related genes, we undertook a comparative gene expression profiling during DC maturation in response to four different prototypic maturation stimuli.
Maturation of human dendritic cells is accompanied by functional remodelling of the ubiquitin-proteasome system.
No sample metadata fields
View SamplesEfficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to impaired expression of IFN--inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that repeated short-term co-cultures of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-1 (26-35)-specific CTL led to the generation of clones resistant to CTL-mediated cell death. To determine which of the UPS components and its associated pathways was responsible for CTL escape; three UKRV-Mel-15a clones were subjected to microarray gene expression analysis.
Exposure to Melan-A/MART-126-35 tumor epitope specific CD8(+)T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS).
Specimen part
View SamplesBackground: Cerebral ischemia/reperfusion injury is a common secondary effect of cardiac arrest which is largely responsible for postresuscitative mortality. Therefore development of therapies which restore and protect the brain function after cardiac arrest is essential. Methylene blue (MB) has been experimentally proven neuroprotective in a porcine model of global ischemia-reperfusion in experimental cardiac arrest. However, no comprehensive analyses have been conducted at gene expression level.
Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress.
Specimen part
View SamplesThe ubiquitin proteasome system (UPS) is known to possess important regulatory functions in the immune response. To gain a better and first comprehensive insight into the mechanisms of remodelling of UPS related gene expression inresponse to interferon-gamma, we undertook a comparative gene expression profiling during interferon-gamma stimulation at very early time points.
Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress.
Specimen part, Time
View Samples