The cellular response to replication stress requires the DNA-damage responsive kinase ATM and its co-factor ATMIN, however the roles of this signaling pathway following replication stress are unclear. RNA-seq and subsequent differential expression analyses were utilized to identify the functions of ATM and ATMIN in response to replication stress induced by Aphidcolin (APH). Overall design: Mouse Embryonic Fibroblasts (MEFs) deleted for ATM or ATMIN were treated with 1µM APH or DMSO as a control. Two different wild-type MEF cell lines (wtATM, wtATMIN) served as controls. RNA-seq was performed in duplicates, in a total of 32 samples, with an average of 31.1M aligned readsobtained per group,with 15.5M reads obtained per replicate.
A Comprehensive Analysis of the Dynamic Response to Aphidicolin-Mediated Replication Stress Uncovers Targets for ATM and ATMIN.
Specimen part, Treatment, Subject
View SamplesIn this dataset, we include the expression data obtained from dissected mouse 16.5 embryonic brains using 3 wild type and 3 Tdp21-3 individuals. These data are used to obtain 165 genes that are differentially expressed as a consequence of Tdp2 absence.
TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative Epigenetic Analysis Reveals Therapeutic Targets to the DNA Methyltransferase Inhibitor Guadecitabine (SGI-110) in Hepatocellular Carcinoma.
Cell line, Treatment, Time
View SamplesThere is an urgent need for developing more effective therapies for aggressive hepatocellular carcinoma (HCC). Guadecitabine (SGI-110) is a second-generation DNA methyltransferase inhibitor (DNMTi) currently in clinical trials for HCC and shows greater stability and performance over first generation DNMTis. The aim of this study is to identify potential therapeutic targets of SGI-110 for clinical trials.
Integrative Epigenetic Analysis Reveals Therapeutic Targets to the DNA Methyltransferase Inhibitor Guadecitabine (SGI-110) in Hepatocellular Carcinoma.
Cell line, Time
View SamplesWe have generated a transgenic rat model with postnatal pathology. In order to investigate the potential contribution of changes in kidney gene expression to the pathology, we have conducted microarray-based gene expression profiling of postnatal kidney.
A novel long-range enhancer regulates postnatal expression of Zeb2: implications for Mowat-Wilson syndrome phenotypes.
Age, Specimen part, Time
View SamplesThe pancreatic beta cells are the only cells that can produce insulin in response to prevailing glycemia. The development of beta cells was found to be depending on the activity of a complex genetic network. Overexpression of transcriptional factor MafK in beta cells have resulted in impairment of thier functions and suppressed insulin secretion and increased the severity of beta cell loss resulting in an overt diabetes.
β-Cell-Specific Mafk Overexpression Impairs Pancreatic Endocrine Cell Development.
Specimen part
View SamplesThe goal of this study is to simultaneously interrogate host and parasite gene expression programs in human macrophages infected with the intracellular parasites from the genus Leishmania. We conducted high-resolution sequencing of the transcriptomes of human macrophages infected with Leishmania spp. using an RNA-seq approach. An array of computational tools was applied to map reads to the Leishmania and human genomes and reconstruct full-length transcripts. mRNA abundance was determined for Leishmania and human genes at various time points post-infection, enabling us to identify co-expression patterns that correlate with the biology of the parasite and to obtain a preliminary analysis of the dynamic nature of parasite and host cell gene expression programs in the context of infection. This study provides a solid framework for future functional and genomic studies of leishmaniasis as well as intracellular pathogenesis in general.
Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures.
No sample metadata fields
View SamplesWe conducted a preliminary investigation to determine whether ethanol-induced alterations in placental gene expression may have some utility as a diagnostic indicator of maternal drinking during pregnancy as well as a prognostic indicator of risk for adverse neurobehavioral outcomes in affected offspring.
Effects of moderate drinking during pregnancy on placental gene expression.
Specimen part
View SamplesMacrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and alterations in mRNA levels were analyzed. We identified three transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands, in the presence of three different “reprogramming” signals; high density immune complexes (IC), prostaglandin E2 (PGE2), or adenosine (Ado). All three of these cell populations produced higher levels of transcripts for IL-10, and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1Beta, IL-6, and IL-12. All three macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore we consider each to have immunoregulatory activity. This immunoregulatory activity occurred equally well in macrophages from stat6-deficient mice. The lack of STAT6 did not affect macrophages’ ability to reciprocally change cytokine production or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These immunoregulatory macrophages are transcriptionally and functionally related, and quite distinct from macrophages treated with IL-4.
The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling.
No sample metadata fields
View SamplesCirculating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape of circulating RNA in human subjects. By focusing on tissue-specific genes, we were able to identify the relative contributions of these tissues to circulating RNA and monitor changes during tissue development and neurodegenerative disease states.
Noninvasive in vivo monitoring of tissue-specific global gene expression in humans.
No sample metadata fields
View Samples