Background: Local recurrence is the major manifestation of treatment failure in patients with operable laryngeal carcinoma. Established clinicopathological factors cannot sufficiently predict patients that are likely to recur after treatment. Additional tools are therefore required to accurately identify patients at high risk for recurrence. Methods: Using Affymetrix U133A Genechips, we profiled fresh-frozen tumor tissues from 59 patients with operable laryngeal cancer. All patients were treated locally with surgery, with or without radiation therapy. We performed Cox regression proportional hazards modeling to identify multigene predictors of recurrence. The end-point of our analysis was disease-free survival (DFS). Gene models were directly validated in a separate, similarly treated cohort of 50 patients using Affymetrix chips. In an attempt to further validate our results, we profiled 12 selected genes of our model in formalin-fixed tumor tissues from an independent cohort of 75 patients, using quantitative real time-polymerase chain reaction (qRT-PCR). Results: We focused on genes univariately associated with DFS (p<0.05) in the training set. Among several gene models comprising different numbers of genes, a 30-gene model demonstrated optimal performance (log-rank, p<0.001). We directly applied these gene models to the validation set, after adjusting for non-biological experimental variability, and observed similar results. Specifically, median DFS, as predicted by the 30-gene model, was 34 and 80 months for high- and low-risk patients, respectively (p=0.01). Hazard Ratio (HR) for recurrence for the high-risk group was 3.87 (95% CI 1.28-11.73, p=0.017). Furthermore, unsupervised hierarchical clustering of the 75 patients, based on the qRT-PCR 12-gene profile, yielded two groups, which differed significantly in DFS (log-rank, p=0.027). HR= for recurrence was 2.26, (95% CI 1.08-4.76, p=0.031). Conclusion: We have established and validated gene models that can successfully stratify patients with laryngeal cancer, based on their risk for recurrence. Thus, patients with unfavorable prognosis, when accurately identified, could be ideal candidates for the application of more aggressive treatment modalities.
Identification and validation of a multigene predictor of recurrence in primary laryngeal cancer.
Age, Specimen part, Disease stage
View SamplesThe molecular mechanisms underlying the great differences in susceptibility to noise-induced hearing loss (NIHL) exhibited by both humans and laboratory animals are unknown. Using microarray technology, the present study demonstrates that the effects of noise overexposure on the expression of molecules likely to be important to the development of NIHL differ among inbred mice that have distinctive susceptibilities to NIHL including B6.CAST, 129X1/SvJ, and 129S1/SvImJ. The noise-exposure protocol produced, on average, a permanent loss of about 40 dB in sensitivity for auditory brainstem responses in susceptible B6.CAST mice, but no threshold elevations for the two resistant 129S1/SvImJ and 129X1/SvJ substrains. Measurements of noise-induced gene expression changes 6 h after the noise exposure revealed significant alterations in the expression levels of 48 genes in the resistant mice, while by these same criteria, there were seven differentially expressed genes in the susceptible B6.CAST mice. Differentially expressed genes in both groups of mice included subsets of transcription factors. However, only in the resistant mice was there a significant induction of proteins involved in cell-survival pathways such as HSP70, HSP40, p21, GADD45beta, Ier3, and Nf-kappaB. Moreover, increased expression of three of these factors after noise was confirmed at the protein level. Drastically enhanced HSP70, GADD45beta, and p21 immunostaining were detected 6 h after the noise exposure in subsets of cells of the lateral wall, spiral limbus, and organ of Corti as well as in cochlear nerve fibers. Upregulation of these proteins after noise exposure likely contributes to the prevalence of survival cellular pathways and thus to the resistance to NIHL that is characteristic of the 129X1/SvJ mice.
Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage.
No sample metadata fields
View SamplesKATP opposes depolarization of cells in the heart, smooth muscle, and other tissues by permitting the efflux of potassium ions and this efflux is evidently required to prevent unopposed vasoconstriction and insufficiency of coronary artery blood flow triggered by one or more cytokines induced in response to LPS. The cytokine(s) involved must elicit a dysfunctional response in the Kir6.1-deficient environment, and to gain further insight into the effects of the mutation, we examined the transcriptional status of whole heart, isolated from normal C57BL/6J mice or KcnJ8Md/Md mice, before and after injection of 1 g of LPS
ATP-sensitive potassium channels mediate survival during infection in mammals and insects.
No sample metadata fields
View SamplesSenescence is a cellular phenotype present in health and disease, characterized by a stable cell cycle arrest and an inflammatory response, denominated senescence-associated secretory phenotype (SASP). The SASP is important in influencing the behaviour of neighbouring cells and altering the microenvironment; yet, this role has been mainly attributed to soluble factors. Here, we show that both the soluble factors in addition to small extracellular vesicles (sEV) are capable of transmitting paracrine senescence to nearby cells. Analysis of individual cells internalizing sEV, using a Cre-reporter system, show a positive correlation between sEV uptake and senescence activation. Interestingly, we find an increase in the number of multivesicular bodies during senescence in vivo. sEV protein characterization by mass spectrometry (MS) followed by a functional siRNA screen identify the Interferon Induced Transmembrane Protein 3 (IFITM3) as partially responsible for transmitting senescence to normal cells. Altogether, we found that sEV contribute to paracrine senescence. Overall design: SASP related mRNA transcripts in HFFF2 treated with sEV from iRAS cells in comparison with HFFF2 treated with sEV from iC cells
Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein IFITM3.
Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.
Sex, Specimen part, Disease, Disease stage
View SamplesGenome-wide analysis of transcriptional profiles in children <17 years of age with bacterial or viral infections or with clinical features suggestive of infection.
Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.
Sex, Specimen part
View SamplesGenome-wide analysis of transcriptional profiles in children <17 years of age with bacterial or viral infections or with clinical features suggestive of infection.
Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.
Sex, Specimen part
View SamplesGenome-wide analysis of transcriptional profiles in children <17 years of age with bacterial or viral infections or with clinical features suggestive of infection.
Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.
Sex, Specimen part
View SamplesGenome-wide analysis of transcriptional profiles in children <17 years of age with bacterial or viral infections or with clinical features suggestive of infection.
Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.
Sex, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.
Sex
View Samples