Here we propose the direct conversion of human somatic cells into naive induced pluripotent cells (niPSC). Dataset: 7 expanded niPSC lines (4 from BJ cells, 1 from HFF-1, 1 from WI38, 1from IMR90), 1 freshly-isolated primary colonies of niPSC from BJ, 1 established naive embryonic line H9, 1 primed induced pluripotent cell line (from BJ), 1 sample of BJ fibroblasts, 1 sample of WI38 fibroblasts, 1 sample IMR90 fibroblasts.
Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics.
No sample metadata fields
View SamplesThe response of cells to hypoxia is characterised by co-ordinated regulation of many genes. Studies of the regulation of the expression of many of these genes by oxygen has implicated a role for the heterodimeric transcription factor hypoxia inducible factor (HIF). The mechanism of oxygen sensing which controls this heterodimeric factor is via oxygen dependent prolyl and asparaginyl hydroxylation by specific 2-oxoglutarate dependent dioxygenases (PHD1, PHD2, PHD3 and FIH-1). Whilst HIF appears to have a major role in hypoxic regulation of gene expression, it is unclear to what extent other transcriptional mechanisms are also involved in the response to hypoxia. The extent to which 2-oxoglutarate dependent dioxygenases are responsible for the oxygen sensing mechanism in HIF-independent hypoxic gene regulation is also unclear. Both the prolyl and asparaginyl hydroxylases can be inhibited by dimethyloxalylglycine (DMOG). Such inhibition can produce activation of the HIF system with enhanced transcription of target genes and might have a role in the therapy of ischaemic disease. We have examined the extent to which the HIF system contributes to the regulation of gene expression by hypoxia, to what extent 2-oxoglutarate dependent dioxygenase inhibitor can mimic the hypoxic response and the nature of the global transcriptional response to hypoxia. We have utilised microarray assays of mRNA abundance to examine the gene expression changes in response to hypoxia and to DMOG. We demonstrate a large number of hypoxically regulated genes, both known and novel, and find a surprisingly high level of mimicry of the hypoxic response by use of the 2-oxoglutarate dependent dioxygenase inhibitor, dimethyloxalylglycine. We have also used microarray analysis of cells treated with small interfering RNA (siRNA) targeting HIF-1alpha and HIF-2alpha to demonstrate the differing contributions of each transcription factor to the transcriptional response to hypoxia. Candidate transcripts were confirmed using an independent microarray platform and real-time PCR. The results emphasise the critical role of the HIF system in the hypoxic response, whilst indicating the dominance of HIF-1alpha and defining genes that only respond to HIF-2alpha.
Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways.
No sample metadata fields
View SamplesHearts of Myh6-MeCP2 transgenic mice and wildtype littermates were rapidly dissected and flash frozen.
Adrenergic Repression of the Epigenetic Reader MeCP2 Facilitates Cardiac Adaptation in Chronic Heart Failure.
Specimen part
View SamplesThe aim of the study is to evaluate oxygen regulated gene expression in human peripheral blood lymphocytes using microarray analysis.
Variations within oxygen-regulated gene expression in humans.
No sample metadata fields
View SamplesWe established and characterized a new recessive mutant mouse line kta41 with a point mutation in Scube3 at position 882. The mutant line was detected by screening for morphological abnormalities in the Munich ENU-mutagenesis program. The mutation was mapped by microsatellite markers to mouse chromosome 17, between markers D17MIT29 and D17MIT101. Candidate gene approaches failed due to the low recombination frequency and the high number of genes within the mapped interval. Whole genome sequencing approaches revealed a C to A transversion on position 882 in Scube3 that leads to a missense mutation in the protein (Asn294Lys). We did a broad phenotypic analysis of the mutant mouse line in the German Mouse Clinic (GMC), and followed up the found alterations by detailed phenotypic characterization. Scube3-kta41-/- mice show a series of phenotypic alterations, mainly in the skeleton, behavior and neurological abnormalities as well as changes in physiology, metabolism and immune status.
The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations.
Sex, Age
View Samples