In this dataset, we include the expression data obtained from dissected mouse 16.5 embryonic brains using 3 wild type and 3 Tdp21-3 individuals. These data are used to obtain 165 genes that are differentially expressed as a consequence of Tdp2 absence.
TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function.
Specimen part
View SamplesResting B cells were isolated from WT or KMTD KO mice by immunomagentic depletion of with anti-CD43 beads. Gene expression use determined by RNAseq in resting B cells or B cells stimulated with LPS, IL4, and anti-mouse CD180 for 3 days. Overall design: RNAseq was used to profile unstimulated resting B cells (n=3) and B cells stimulated for 3 days (n=3).
The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development.
No sample metadata fields
View SamplesWhile activation of canonical NF-?B signaling through the IKK complex is well studied, few regulators of NIK-dependent non-canonical p52 nuclear translocation have been identified. We discovered a novel role for cyclin dependent kinase 12 (CDK12) in transcriptionally regulating the non-canonical NF-?B pathway. High-content phenotypic screening identified a novel compound, 919278, which inhibits lymphotoxin ß receptor (LTßR)- and FN14-dependent p52 nuclear translocation, but not TNFa receptor (TNFR)-mediated, canonical NF-?B p65 nuclear translocation. Chemoproteomics identified cyclin dependent kinase 12 (CDK12) as the target of 919278. CDK12 inhibition by 919278, THZ1, or siRNA knock down all affect similar global transcriptional changes and prevent LTßR and FN14-dependent MAP3K14 (NIK) mRNA induction and subsequent protein accumulation. In addition, 919278 and THZ1 treatment reduce RNA Pol II CTD phosphorylation. This powerful approach of coupling a phenotypic screen with chemoproteomics revealed a novel regulatory pathway of the non-canonical NF-?B pathway that could serve as a therapeutic target in autoimmunity and cancer. Overall design: There are TWEAK stimulated and unstimulated conditions, 4hr and 24hr time points. 7 treatments (DMSO, BIO0702697, BIO0919278, BIO032202, NTsiRNA, siRNAs523626, siRNAs523629) in duplicates. In total, 56 sample were sequenced and analyzed.
CDK12-mediated transcriptional regulation of noncanonical NF-κB components is essential for signaling.
Cell line, Treatment, Subject, Time
View SamplesAnalysis of hematopoietic stem cells (HSC, LSK Flt3-) and myeloid progenitors (MP, LK CD34+) sorted from wildtype and Dnmt1 hypomorph mice
DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.
Specimen part
View SamplesIsolated methylmalonic acidemia (MMA) is a pleiotropic enzymatic defect of branched-chain amino acid oxidation most commonly caused by deficiency of methylmalonyl-CoA mutase (MUT). End stage renal disease (ESRD) is emerging as an inevitable disease-related complication, recalcitrant to conventional therapies and liver transplantation. To establish a viable model of MMA-associated renal disease, methylmalonyl-CoA mutase (Mut) was expressed in the liver of Mut -/- mice as a stable transgene under the control of an albumin (INS-Alb-Mut) promoter. Mut -/- ;TgINS-Alb-Mut mice were rescued from the neonatal lethality displayed by Mut -/- mice and manifested a decreased glomerular filtration rate (GFR), chronic tubulointerstital nephritis (CTIN) and prominent ultrastructural changes in the proximal tubular mitochondria, replicating precisely the renal manifestations seen in a large MMA patient cohort.
Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia.
Sex, Specimen part
View Samples