Transcriptional and posttranscriptional regulatory networks play a crucial role in the maintenance and adaptation of pancreatic beta-cell function. In this study we show that the levels of the prototypic neuroendocrine miRNA-7 are regulated in islets of obese, diabetic and aged mouse models. Using gain- and loss-of-function models we demonstrate that miR-7 regulates crucial members of the endocrine pancreatic transcriptional network controlling differentiation and insulin synthesis. Importantly, it also directly regulates key proteins in the insulin granule secretory machinery. These results reveal an interconnecting miR-7 genomic circuit that influences beta-cell differentiation, insulin synthesis and release and define a role for miR-7 as an endocrine checkpoint to stabilize beta-cell function during metabolic stress. These findings have implications for miR-7 inhibitors as potential therapies for type 2 diabetes and neurodegenerative diseases.
MicroRNA-7a regulates pancreatic β cell function.
Specimen part, Cell line, Treatment
View SamplesClose to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability.
A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets.
Sex, Age, Specimen part
View SamplesA gene co-expression network analysis has been conducted to identify T2D-associated gene modules. Donors 1-48 were used for the initial analysis and donors 49-80 for the replication and were normalized separately in this study
Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes.
Sex, Age, Specimen part
View Samples