A distinct highly invasive subpopulation was identified in breast cancer cell lines. The molecular characteristics of these cells was investigated, revealing a set of genes whose high expression confers the ability to invade.
ΔNp63α Promotes Breast Cancer Cell Motility through the Selective Activation of Components of the Epithelial-to-Mesenchymal Transition Program.
Cell line
View SamplesBackground and aims: Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. Incidence is increasing worldwide and these cancers collectively represent the second most common primary liver tumour. CCAs are characterized by genetic and epigenetic alterations that determine their pathogenesis. Hypermethylation of the SOX17 promoter was recently reported in human CCA tumours. SOX17 seems to be a key transcription factor for biliary embryogenesis. Here, we evaluated the role of SOX17 in cholangiocyte differentiation and in cholangiocarcinogenesis. Methods: SOX17 expression and function was evaluated during the differentiation of human induced pluripotent stem cells (iPSC) into cholangiocytes, in the dedifferentiation of normal human cholangiocytes (NHC) and in cholangiocarcinogenesis. Lentiviruses overexpressing or knocking-down SOX17 (Lent-SOX17 and Lent-shRNA-SOX17, respectively) were used. Gene expression arrays were performed. Results: SOX17 expression is highly induced in the later stages of cholangiocyte differentiation from iPSC, and mediates the acquisition of the biliary markers cytokeratin (CK) 7 and 19, as well as fibronectin. In addition, SOX17 becomes progressively downregulated in NHC over serial cell passages in vitro and this event is associated with cellular senescence; however, experimental SOX17 knocking-down in differentiated NHC decreased the expression of both CK7 and 19 without affecting cellular senescence. SOX17 expression is reduced in CCA cells compared to NHC, as well as in human CCA tissue compared to human gallbladder tissue or NHC. In a murine xenograft model, overexpression of SOX17 in CCA cells decreased their tumorigenic capacity related to increased oxidative stress and apoptosis. Interestingly, overexpression of SOX17 in NHC did not affect their survival. Moreover, SOX17 overexpression inhibited the Wnt/-catenin-dependent proliferation in CCA cells and was associated with upregulation of biliary epithelial markers and restoration of the primary cilium length. Both Wnt3a and TGF1 decreased SOX17 expression in NHC in a DNMT1-dependent manner. Inhibition of DNMT1 in CCA cells with siRNAs or pharmacological drugs upregulated SOX17 expression. Conclusion: SOX17 regulates the cholangiocyte phenotype and becomes epigenetically downregulated in CCA. SOX17 acts as a tumour suppressor in CCA, and restoration of its expression may have important therapeutic value.
SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma.
Specimen part, Treatment
View SamplesFull title: Genome-wide expression profiles of primary human small airway epithelial cells (SAECs) infected with different adenovirus mutants.
Heterochromatin silencing of p53 target genes by a small viral protein.
Specimen part
View SamplesSingle-cell analysis of KPC pancreatic tumor cells Overall design: Evaluate the single-cell transcriptomic landscape in 3 KPf/fC tumors
A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma.
Specimen part, Cell line, Subject
View SamplesmPDAC tumors of KPC mice Overall design: medium and large size tumors
A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma.
Specimen part, Cell line, Subject
View SamplesMesenchymal stromal cells (MSCs) sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction between MSCs and the innate immune comaprtment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1M) and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1M and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens new perspectives for MSC-based cell therapy.
CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells.
Specimen part
View SamplesBone-marrow mesenchymal stem cells (MSCs) are plastic adherent cells that can differentiate into various tissue lineages, including osteoblasts, adipocytes and chondrocytes. However, this progenitor property is not shared by all cells within the MSC population. In addition, MSCs vary in their proliferation capacities and expression of markers. Because of heterogeneity of CD146 expression in the MSC population, we compared CD146-/Low and CD146High cells under clonal and non-clonal (sorted MSCs) conditions to determine whether this expression is associated with specific functions. CD146-/Low and CD146High MSCs did not differ in colony-forming unit-fibroblast number, osteogenic and adipogenic differentiation or in vitro hematopoietic supportive activity. However, CD146-/Low clones proliferated slightly but significantly faster than did CD146High clones. In addition, a strong expression of CD146 molecule was associated with a commitment towards a vascular smooth muscle cell lineage with upregulation of calponin-1 expression. Thus, within a bone-marrow MSC population, certain subpopulations characterized by high expression of CD146, are committed toward a vascular smooth muscle cell lineage.
CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment.
Specimen part, Subject
View SamplesFibroblast activation protein-a (FAP) identifies stromal cells of mesenchymal origin in human cancers and chronic inflammatory lesions. In mouse models of cancer, they have been shown to be immune suppressive, but studies of their occurrence and function in normal tissues have been limited. With a transgenic mouse line permitting the bioluminescent imaging of FAP(+) cells, we find that they reside in most tissues of the adult mouse. FAP(+) cells from three sites, skeletal muscle, adipose tissue, and pancreas, have highly similar transcriptomes, suggesting a shared lineage. FAP(+) cells of skeletal muscle are the major local source of follistatin, and in bone marrow they express Cxcl12 and KitL. Experimental ablation of these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and erythropoiesis, revealing their essential functions in maintaining normal muscle mass and hematopoiesis, respectively. Remarkably, these cells are altered at these sites in transplantable and spontaneous mouse models of cancer-induced cachexia and anemia. Thus, the FAP(+) stromal cell may have roles in two adverse consequences of cancer: their acquisition by tumors may cause failure of immunosurveillance, and their alteration in normal tissues contributes to the paraneoplastic syndromes of cachexia and anemia. Overall design: FAP+ cells were sorted from two mesenchymal tissues, visceral adipose and skeletal muscle, and from an epithelial organ, the pancreas. These were compared to MEFs. Cells were isolated in duplicate experiments and these were analysed separately. These were compared to previously published publically available CD4+ T-cell subset data.
Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia.
Specimen part, Subject
View SamplesWhether epidermal factors play a primary role in immune-mediated skin diseases such as psoriasis is unknown. We now show that the pro-differentiation transcription factor Grainyhead-like 3 (GRHL3), essential during epidermal development but dispensable in adult skin homeostasis, is required for barrier repair after adult epidermal injury. Consistent with activation of a GRHL3-regulated repair pathway in psoriasis, we find GRHL3 up-regulation in lesional skin where GRHL3 binds known epidermal differentiation gene targets. Furthermore, we show the functionality of this pathway in the Imiquimod mouse model of immune-mediated epidermal hyperplasia where loss of Grhl3 exacerbates the epidermal damage response, conferring greater sensitivity to disease induction, delayed resolution of epidermal lesions, and resistance to anti-IL-22 therapy. ChIP-seq and gene expression profiling studies show that while GRHL3 regulates differentiation genes both in development and during repair from immune-mediated damage, it targets distinct sets of genes in the two processes. In particular, GRHL3 suppresses a number of alarmin and other pro-inflammatory genes after immune injury. This study identifies a GRHL3-regulated epidermal barrier repair pathway that suppresses disease initiation and helps resolve existing lesions in immune-mediated epidermal hyperplasia.
A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia.
Sex, Treatment
View SamplesSystemic inflammation like in sepsis is still lacking specific diagnostic markers and effective therapeutics. The first line of defense against intruding pathogens and endogenous damage signals is pattern recognition by e.g., complement and Toll-like receptors (TLR). Combined inhibition of a key complement component (C3 and C5) and TLR-co-receptor CD14 has been shown to attenuate certain systemic inflammatory responses. Using DNA microarray and gene annotation analyses, we aimed to decipher the effect of combined inhibition of C3 and CD14 on the transcriptional response to bacterial challenge in human whole blood. Importantly, combined inhibition reversed the transcriptional changes of 70% of the 2335 genes which significantly responded to heat-inactivated Escherichia coli by on average 80%. Single inhibition was less efficient (p<0.001) but revealed a suppressive effect of C3 on 21% of the responding genes which was partially counteracted by CD14. Furthermore, CD14 dependency of the Escherichia coli-induced response was increased in C5-deficient compared to C5-sufficient blood. The observed crucial distinct and synergistic roles for complement and CD14 on the transcriptional level correspond to their broad impact on the inflammatory response in human blood, and their combined inhibition may become inevitable in the early treatment of acute systemic inflammation.
CD14 and complement crosstalk and largely mediate the transcriptional response to Escherichia coli in human whole blood as revealed by DNA microarray.
Specimen part
View Samples