A growing body of evidence points to the essential role of bone marrow (BM) tumor microenvironment in Multiple Myeloma (MM) maintenance and progression. Mesenchymal stem cells (MSC) are one of the most important players in this scenario. Through direct and indirect interactions, these cells support MM cells by promoting increase of proliferation, migration, survival, and drug resistance. Additionally, an increasing number of evidence has been demonstrating that MSC from MM patients (MM-MSC) have several abnormalities when compared with their normal counterpart from normal donors (ND-MSC). Therefore, the aimed of our study was to explore the differences between MM-MSC and ND-MSC through gene expression analysis.
Transcriptome Analysis of Mesenchymal Stem Cells from Multiple Myeloma Patients Reveals Downregulation of Genes Involved in Cell Cycle Progression, Immune Response, and Bone Metabolism.
Sex, Age, Specimen part, Disease stage, Subject
View SamplesWe used microarrays to analyze the global expression patterns for 22 commercially available pancreatic cancer cell lines
Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems.
Specimen part, Cell line
View SamplesTGF-beta treatment of Panc-1 pancreatic adenocarcinoma cell line on Affymetrix HG_U133_plus_2 arrays; triplicate experiments.
Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems.
Specimen part, Cell line, Treatment
View SamplesA specific subpopulation of neural progenitor cells, the basal radial glia cells (bRGCs) of the outer subventricular zone (OSVZ), are thought to have a key role in the evolutionary expansion of mammalian neocortex. In the developing lissencephalic mouse neocortex, bRGCs exist at low abundance and show significant molecular differences from bRGCs in developing gyrencephalic species. Here, we demonstrate that developing mouse medial neocortex, in contrast to the canonically studied lateral neocortex, exhibits an OSVZ and an abundance of bRGCs similar to that in developing gyrencephalic neocortex. Unlike bRGCs in developing mouse lateral neocortex, the bRGCs in medial neocortex exhibit human bRGC-like gene expression, including expression of Hopx, a human bRGC marker. Disruption of Hopx expression in mouse embryonic medial neocortex and forced Hopx expression in mouse embryonic lateral neocortex demonstrate that Hopx is required and sufficient, respectively, for a bRGC abundance as found in developing gyrencephalic neocortex. Taken together, our data identify a novel bRGC subpopulation in developing mouse medial neocortex that is highly related to bRGCs of developing gyrencephalic neocortex. Overall design: 221 single-cell transcriptomes from microdissected medial neocortex of E18.5 mouse embryos (two independent analyses using a pool of 8 neocortices each).
A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex.
Sex, Specimen part, Cell line, Subject
View SamplesOriginal patient tumor is directly implanted in mice xenografts. Tumor is propagated to multiple mice for conduct of 6 arm treatment trials and control. Therapies are selected based on T0 and F0 genomic profiles.
Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance.
No sample metadata fields
View SamplesObjective: Transcriptional profiling of murine HSPC in response to ß-glucan-induced innate immune training Overall design: HSPC mRNA profiles of wild type (WT) mice injected with PBS or ß-glucan. Wild type (WT) C57BL/6 mice were intraperitoneally injected with PBS or 1 mg ß-glucan in PBS. Mice were sacrificed on day 7 or day 28 and long-term heematopoietic stem cells (LT-HSC) and/or multipotent progenitors (MPP) were sorted. In another group, mice were injected with PBS or 1 mg ß-glucan in PBS and on day 7 they were additionally injected with 150 mg/kg 5-fluouracil. Mice were sacrificed on day 14 after 5-FU administration and LT-HSC were sorted.
Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity.
Age, Specimen part, Cell line, Subject
View Samples