Myotonic Dystrophy Type-2 (DM2) is an autosomal dominant disease caused by the expansion of a CCTG tetraplet repeat. It is a multisystemic disorder, affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system.
Genome wide identification of aberrant alternative splicing events in myotonic dystrophy type 2.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesMicroRNAs (miRNAs) are small non-protein-coding RNAs that are incorporated into the RNA-induced silencing complex (RISC) and inhibit gene expression by regulating the stability and/or the translational efficiency of target mRNAs. Previously, we demonstrated that miR-210 is a key player of endothelial cell (EC) response to hypoxia, modulating EC survival, migration and ability to form capillary like-structures. Moreover, the receptor tyrosine kinase ligand Ephrin-A3 was identified as one functionally relevant target. Since each miRNA regulates hundreds of mRNAs, different approaches were combined to identify new miR-210 targets: a Using target prediction software, 32 new miR-210 potential targets were identified. b The proteomic profiling of miR-210 over-expressing ECs identified 11 proteins that were specifically inhibited by miR-210, either directly or indirectly. c Affymetrix based gene expression profiles identified 51 genes that were both down-modulated by miR-210 over-expression and de-repressed when miR-210 was blocked. Surprisingly, only few genes identified either by proteomics or transcriptomics were recognized as miR-210 targets by target prediction algorithms. However, a low-stringency pairing research revealed enrichment for miR-210 putative binding sites, raising the possibility that these genes were targeted via non-canonical recognition sequences. To clarify this issue, miR-210-loaded RISC was purified by immuno-precipitation along with its mRNA targets. The presence of Ephrin-A3 mRNA in the complex validated this approach. We found that 32 potential targets were indeed enriched in miR-210-loaded RISC, and thus can be considered as genuine miR-210 targets. In keeping with this conclusion, we were able to further validate a sub-set of them by 3UTR-reporter assays. Gene ontology analysis of the targets confirmed the known miR-210 activity in differentiation and cell cycle regulation, highlighting new functions such as involvement in RNA processing, DNA binding, development, membrane trafficking and amino acid catabolism. In conclusion, we validated a multidisciplinary approach for miRNAs target identification and indicated novel molecular mechanisms underpinning miR-210 role in EC response to hypoxia.
An integrated approach for experimental target identification of hypoxia-induced miR-210.
Cell line
View SamplesFibro-adipogenic progenitors (FAPs) are emerging cellular components of the skeletal muscle regenerative environment. The alternative functional phenotype of FAPs - either supportive of muscle regeneration or promoting fibro-adipogenic degeneration - is a key determinant in the pathogenesis of muscular diseases, including Duchenne Muscular Dystrophy (DMD). However, the molecular regulation of FAPs is still unknown. We show here that an "HDAC-myomiR-BAF60 variant network" regulates the functional phenotype of FAPs in dystrophic muscles of mdx mice. Combinatorial analysis of gene expression microarray and genome-wide chromatin remodeling by Nuclease accessibility (NA)-seq revealed that HDAC inhibitors de-repress a "latent" myogenic program in FAPs from dystrophic muscles at early stages of disease progression. In these cells HDAC inhibition promoted the expression of two core components of the myogenic transcriptional machinery, MyoD and BAF60C, and upregulated the myomiRs (miRs) miR-1.2, miR-133 and miR-206, which target two alternative BAF60 variants (BAF60A and B) ultimately leading to the activation of a pro-myogenic program at the expense of the fibro-adipogenic phenotype. By contrast, FAPs from dystrophic muscles at late stages of disease progression displayed resistance to HDACi-induced chromatin remodeling at myogenic loci and fail to activate the pro-myogenic phenotype. These results reveal a previously unappreciated disease stage-specific bipotency of mesenchimal cells within the regenerative environment of dystrophic muscles. Resolution of such bi-potency by epigenetic interventions, such as HDACi, provides the molecular rationale for the in situ reprogramming of target cells to promote therapeutic regeneration of dystrophic muscles. Overall design: miRNA modulation upon Histone Deacetylase inhibition in Fibro-Adipogenic Progenitors (FAPs) derived from young mdx mice was evaluated by small RNA-sequencing in 2 controls and 2 treated samples
HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles.
No sample metadata fields
View SamplesIn the urinary tract, smooth muscle (SM) is present in the renal pelvis, the ureter, the bladder and the urethra and plays a crucial role in the functional and structural integrity of these organs. In Tshz3 mutant ureters the myogenic program is not activated in the proximal region due to the absence of expression of myocardin (Myocd), a key regulator of SM differentiation. We set out to characterize TSHZ3-dependent mechanisms that participate to the process of ureteric smooth muscle cells (SMC) differentiation.
The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila.
Specimen part
View SamplesNPTX1 is a key inducer of neural lineages from the human ESC.
NPTX1 regulates neural lineage specification from human pluripotent stem cells.
Cell line, Time
View SamplesCeliac disease (CeD) is an intestinal immune-mediated disorder caused by gluten ingestion in genetically predisposed subjects. CeD is characterized by villous atrophy, altered intestinal permeability, crypt hyperplasia and innate and adaptive immune response. This study aimed to develop and validate the use of intestinal organoids from celiac patients to study CeD. A repository of organoids from duodenum of non-celiac and celiac patients was generated and characterized accordingly to standard procedures. RNA-seq analysis was employed to study the global gene expression program of CeD (n=3) and non-CeD (n=3) organoids sets. While the three celiac derived organoids shared similar transcriptional signatures the NC samples set appeared more heterogeneous. We found 486 genes differentially expressed between the two groups. Of them, 299 genes were downregulated (FC<2; FDR<0.05) and 187 were upregulated in CeD (FC >2; FDR<0.05). We observed CeD organoids had significantly altered expression of genes associated with barrier function, innate immunity, and stem cell function. Overall design: mRNA profiles of 3 non-celiac healthy controls and 3 celiac organoids derived from duodenal biopsies.
Human gut derived-organoids provide model to study gluten response and effects of microbiota-derived molecules in celiac disease.
Specimen part, Disease, Subject
View SamplesThe clinical impact of aberrant CEBPA promoter methylation (PM) in AML is controversial discussed. The aim of this study was to clarify the significance of aberrant CEBPA PM with regard to clinical features in a cohort of 572 de novo AML with wildtype CEBPA and normal karyotype. The distal promoter was methylated in 54/572 cases (9.41%) whereas proximal PM was never detected. Methylation of the core promoter was detected in only 8 of 326 cases (2.45%) and thus seems to be a rare event in AML. There was no correlation between CEBPA distal PM, age, sex, white blood cell (WBC) count or Hb levels at diagnosis. We also were not able to detect a significant correlation between the presence of CEBPA distal PM and molecular mutations such as FLT3-ITD, NPM1, AML1, MLL-PTD and IDH1. Solely the frequency of IDH2R140 mutations was significantly reduced in CEBPA distal PM positive compared to CEBPA distal PM negative cases (p=0.01). Furthermore, analysis of CEBPA mRNA expression level revealed no difference between CEBPA distal PM positive and CEBPA distal PM negative cases, suggesting that CEBPA distal PM has no influence on CEBPA expression. CEBPA distal PM did not show impact on overall survival (OS), event free survival (EFS) or incidence of relapse. Also when other mutations were taken into regard no prognostic impact of CEBPA distal PM could be shown. In contrast, a distinct expression profile of CEBPA distal PM positive cases compared to CEBPA mutated and CEBPA distal PM negative cases was observed. In addition, a significantly higher frequency of CEBPA distal PM was detected in RUNX1-RUNX1T1 positive AML compared to the CEBPA witdtype cases. We conclude that the presence of aberrant CEBPA PM has no clinical relevance and is therefore a negligible prognostic marker in de novo AML with normal karyotype.
Frequency and prognostic impact of CEBPA proximal, distal and core promoter methylation in normal karyotype AML: a study on 623 cases.
Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance.
Specimen part, Cell line
View SamplesHEK 293 cells were transiently transfected with plasmids expressing Vector only(PCMV), Aire, or MBD-VP16 with the goal of comparing the global gene expression profiles in the Aire and MBD-VP16 groups
The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance.
Specimen part, Cell line
View SamplesAcute myeloid leukemia (AML) with CEBPA mutations is determined as provisional entity in the current WHO. A difference in clinical outcome between single- (sm) and double-mutated (dm) cases has been reported, whereupon dm cases were shown to be associated with longer overall survival (OS). The occurrence and prognostic impact of concomitant molecular mutations in addition to CEBPAdm has not been assessed until now. Here, we investigated a cohort of 95 AML CEBPAdm cases for concomitant mutations. TET2 was found to be the most frequent mutation (32/94, 34.0%), followed by GATA2 (20/95, 21.0%), WT1 (13/95, 13.7%), DNMT3A (9/94, 9.6%), ASXL1 (9/95, 9.5%), NRAS (8/95, 8.4%), KRAS (3/94, 3.2%), IDH1/2 (6/95, 6.3%), FLT3-ITD (6/95, 6.3%), FLT3-TKD (2/95, 2.1%), NPM1 (2/95, 2.1%), and RUNX1 (1/94). No mutation was detected in MLL-PTD and TP53. With respect to prognostic impact, we observed that those cases harboring additional mutations in TET2 showed significant worse survival than wild-type cases (P=0.035), whereas GATA2 mutated cases showed improved survival (P=0.032). Further, using gene expression microarray analysis we identified no clear different clustering within the CEBPAdm cases with the distinct concomitant mutated genes. In conclusion, we demonstrated that 76.8% of CEBPAdm cases harbored additional alterations in other molecular markers and that CEBPA is a suitable MRD marker to control therapy.
CEBPA double-mutated acute myeloid leukaemia harbours concomitant molecular mutations in 76·8% of cases with TET2 and GATA2 alterations impacting prognosis.
Disease, Disease stage
View Samples