Acute Myeloid Leukemia AML is a cancer in which the process of normal cell hematopoietic differentiation is disrupted. Evidence exists that AML comprises a hierarchy with leukemic stem cells giving rise to more differentiated, but immature and functionally incompetent populations. The similarity of these AML subpopulations to normal stages of hematopoietic differentiation has not been dissected comprehensively at the transcriptional level. Here we introduce Normal Memory Analysis (NorMA), a data analysis method that extracts from omic data the remnants of the healthy normal-like phenotype. Applying NorMA to gene expression data from AML uncovered a wealth of information in the normal-like component of data: the normal hematopoietic memory of AML tumor cells. We found significant variation within the patient population, and we found strong association of this normal hematopoietic memory with survival. We found that undifferentiated NorMA phenotype has significantly worse survival than differentiated NorMA phenotype, showing that the NorMA classification of tumors captures a biologically meaningful stratification of patients, with highly significant survival association. Patients with NorMA phenotype in the undifferentiated Hematopoietic Stem Cell HSC stage had the worst survival, with median survival time under 6 months. We further found significant survival differences between tumor groups with differentiated NorMA phenotype, depending on their hematopoietic path: AML patients with NorMA phenotype in megakaryocyte-erythroid progenitor MEP stage had significantly better survival than those with NorMA phenotype in granulocyte-macrophage progenitor GMP stage. Thus NorMA produced a stratification of AML cohorts by differentiation stage, with significant outcome differences. It also provided clean molecular signatures for these stages. NorMA can be used in many other contexts, to explore for example the tumor cell of origin, or disease predisposition.
An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis.
Specimen part
View SamplesIn response to the cytokines, macrophage colony-stimulating factor and receptor activator of NF-kB ligand, monocyte precursors differentiate into bone marrow-derived macrophages (BMDMs) that ultimately fuse to form multi-nucleated osteoclasts, following a tightly controlled genetic program where specific sets of genes are differentially expressed.
Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases.
Age, Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization.
Specimen part, Time
View SamplesTo determine what DNA methylation and gene expression changes occur following EBV transformation. B-cells were isolated from 3 donors. Resting, CD40 activated and EBV transfromed cells from each donor was analyzed. Each sample was assayed using Affymetrix expression arrays and whole genome bisulfite sequenicng. Additional time points during transformation and activation were sequenced as well, but not assayed for expression.
Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin.
Sex, Age, Specimen part
View SamplesGene expression profiling of epidermal samples obtained from sun-exposed and sun-protected body sites from younger (<35 years old) and older (>60 years old) individuals. The Affymetrix U133A plus 2.0 array was used to obtain gene expression data. Samples included 4 younger sun exposed epidermal samples, 4 older sun exposed epidermal samples, 3 younger sun protected epidermal samples, 5 older sun protected epidermal samples.
Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells.
Specimen part
View SamplesDNA methylation, at CpG islands and promoters, is often inversely correlated with gene expression.
The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Direct genesis of functional rodent and human schwann cells from skin mesenchymal precursors.
Specimen part
View SamplesRecent reports of directed reprogramming have raised questions about the stability of cell lineages. Here, we have addressed this issue, focusing upon skin-derived precursors (SKPs), a dermally-derived precursor cell. We show by lineage tracing that murine SKPs from dorsal skin originate from mesenchymal and not neural crest-derived cells. These mesenchymally-derived SKPs can, without genetic manipulation, generate functional Schwann cells, a neural crest cell type, and are highly similar at the transcriptional level to Schwann cells isolated from the peripheral nerve. This is not a mouse-specific phenomenon, since human SKPs that are highly similar at the transcriptome level can be made from facial (neural crest-derived) and foreskin (mesodermally-derived) dermis, and the mesodermally-derived SKPs can make myelinating Schwann cells. Thus, non-neural crest-derived mesenchymal precursors can differentiate into bona fide peripheral glia in the absence of genetic manipulation, suggesting that developmentally-defined lineage boundaries are more flexible than widely thought.
Direct genesis of functional rodent and human schwann cells from skin mesenchymal precursors.
Specimen part
View Samples