Drosophila miRNAs show distinct change in isoform distribution pattern with age. Some miRNAs show accumulation of the short isoforms, while other miRNAs show the accumulation of the long isoforms with age. The increase of the long isoforms of some miRNAs reflects increased 2''-O-methylated miRNA isoforms with age. The increase in 2''-O-methylated miRNA isoforms reflected increased Ago2-loading, but not Ago1-loading of specific miRNA isoforms with age. This raised a question on whether there is global shift in small RNA loading pattern between Ago1 and Ago2 with age. To investigate change in small RNA loading pattern between Ago1 and Ago2 with age, we performed small RNA deep-sequencing of Ago1 vs Ago2-IP small RNAs at 3d and 30d in Drosophila. This analysis revealed global increase of miRNA loading into Ago2, but not into Ago1 with age. Overall design: 3d and 30d FLAG-HA-Ago2 male flies were collected. Ago1 and Ago2 were immunoprecipitated by anti-Ago1 and anti-FLAG M2 beads respectively. RNA was purified from the beads, P32-labeled, and small RNA fraction was gel-purififed. Small RNA libraries were prepared using Illumina''s TruSeq small RNA sample preparation kit (#RS-200-0012, Illumina, Inc. San Diego, CA), following the manufacturer''s protocol. The libraries were multiplexed and sequenced on HiSeq2000 platform (Illumina).
Impact of age-associated increase in 2'-O-methylation of miRNAs on aging and neurodegeneration in Drosophila.
Sex, Specimen part, Subject
View SamplesWe investigated the expression profiles in the CD4+, CD8, and CD14+ peripheral blood cells (PBLs) of the stage IV melanoma patients and the healthy donors. Overall design: Examination of long noncoding RNA in the CD4+, CD8, and CD14+ peripheral blood cells (PBLs) of the stage IV melanoma patients and the healthy donors.
Integrative Genome-Wide Analysis of Long Noncoding RNAs in Diverse Immune Cell Types of Melanoma Patients.
Specimen part, Subject
View SamplesTo inhibit INS expression, we used shRNA to target the INS promoter. We find that knocking down INS expression with such an shRNA targeting the INS promoter significantly affects expression of 259 genes. Overall design: mRNA profiles of EndoC ßH1 with or without shRNA targetting INS promoter were generated by deep sequencing, in triplicate, using Illumina Hiseq 2500.
<i>Insulin</i> promoter in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism.
Specimen part, Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis.
Specimen part, Cell line
View SamplesThe colorectal cancer (CRC) cell line pair SW480/SW620 is an accepted model to study CRC progression and metastasis formation. Studying gene expression differences might allow to uncover molecular mechanisms that underlie metastasis initiation
The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis.
Specimen part, Cell line
View SamplesWe have developed an in vitro system of cancer cell redirection that employs the 1:50 ratio of cancer cells to normal cells. Using our in vitro system of cancer cell redirection we investigated the genetic profiles of erbB2-overexpressing mammary tumor-derived cells as they undergo the redirection phenomenon.
RNA Expression Profiling Reveals Differentially Regulated Growth Factor and Receptor Expression in Redirected Cancer Cells.
Specimen part
View SamplesDental follicle is a loose connective tissue that surrounds the developing tooth. Dental follicle cells (DFCs) have a promising potential for tissue engineering applications including periodontal and bone regeneration. However, little is known about the molecular mechanisms underlying osteogenic differentiation. In a previous study we detected that more than 35 % of genes that are regulated during osteogenic differentiation of DFCs have promoter binding sites for the transcription factors TP53 and SP1. However, the role of these transcription factors in dental stem cells is still unknown. We hypothesize that both factors influence the processes of cell proliferation and differentiation in dental stem cells. Therefore, we transiently transfected DFCs and dental pulp stem cells (SHED; Stem cells from human exfoliated decidiuous teeth) with expression vectors for these transcription factors. After overexpression of SP1 and TP53, SP1 influenced cell proliferation and TP53 osteogenic differentiation in both dental cell types. The effects on cell proliferation and differentiation were less pronounced after siRNA mediated silencing of TP53 and SP1. This indicates that the effects we observed after TP53 and SP1 overexpression are indirect and subject of complex regulation. Interestingly, upregulated biological processes in DFCs after TP53-overexpression resemble the downregulated biological processes in SHED after SP1-overexpression. Here, regulated processes are involved in cell motility, wound healing and programmed cell death. In conclusion, our study demonstrates that SP1 and TP53 influence cell proliferation and differentiation and similar biological processes in both SHED and DFCs.
Transcription factors TP53 and SP1 and the osteogenic differentiation of dental stem cells.
Specimen part
View SamplesThe hypothesis is that genes involved in the immature schwann cell and promyelinating state will be upregulated and genes that are involved in the myelnating state will be down regulated.
MicroRNA-deficient Schwann cells display congenital hypomyelination.
Sex, Specimen part
View SamplesWe analysed gene expression profiles in dental follicle cells after 7 days of osteogenic differentiation with different inducers.
The differentiation and gene expression profile of human dental follicle cells.
Specimen part
View SamplesPurpose: Primary cutaneous squamous cell carcinoma (SCC) can be an invasive cancer in skin and has the potential to metastasize. We aimed to define the cancer related molecular changes that distinguish non-invasive from invasive SCC.
Gene expression profiling of the leading edge of cutaneous squamous cell carcinoma: IL-24-driven MMP-7.
Subject
View Samples