Transcriptome analysis of hindlimb muscles from dystrophic mice.
The mdx Mutation in the 129/Sv Background Results in a Milder Phenotype: Transcriptome Comparative Analysis Searching for the Protective Factors.
Sex, Age, Specimen part
View SamplesBreast cancer is genetically heterogeneous, and recent studies have underlined a prominent contribution of epigenetics to the development of this disease. To uncover new synthetic lethalities with known breast cancer oncogenes, we screened an epigenome-focused short hairpin RNA library on a panel of engineered breast epithelial cell lines. Here we report a selective interaction between the NOTCH1 signaling pathway and the SUMOylation cascade. Knockdown of the E2-conjugating enzyme UBC9 (UBE2I) as well as inhibition of the E1-activating complex SAE1/UBA2 using ginkgolic acid impairs the growth of NOTCH1-activated breast epithelial cells. We show that upon inhibition of SUMOylation NOTCH1-activated cells proceed slower through the cell cycle and ultimately enter apoptosis. Mechanistically, activation of NOTCH1 signaling depletes the pool of unconjugated small ubiquitin-like modifier 1 (SUMO1) and SUMO2/3 leading to increased sensitivity to perturbation of the SUMOylation cascade. Depletion of unconjugated SUMO correlates with sensitivity to inhibition of SUMOylation also in patient-derived breast cancer cell lines with constitutive NOTCH pathway activation. Our investigation suggests that SUMOylation cascade inhibitors should be further explored as targeted treatment for NOTCH-driven breast cancer. Overall design: We treated MCF10A and NOTCH1 cells with either DMSO or ginkgolic acid 30 uM for 3 days. Two replicates have been analysed for each condition.
NOTCH1 activation in breast cancer confers sensitivity to inhibition of SUMOylation.
No sample metadata fields
View SamplesType 1 diabetes is characterized by the destruction of pancreatic beta cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types including glucagon-producing alpha cells. In a genetic model, overexpression of the master regulatory transcription factor Pax4 or loss of its counterplayer Arx are sufficient to induce the conversion of alpha cells to functional beta-like cells. Here we identify artemisinins as small molecules that functionally repress Arx and induce beta-cell characteristics in alpha cells. We show that the protein gephyrin is the mammalian target of these antimalaria drugs. Finally, we demonstrate that gephyrin-mediated enhancement of GABAA receptor signaling is the mechanism of action of these molecules in pancreatic transdifferentiation. Our results indicate that gephyrin is a novel druggable target for the regeneration of pancreatic beta cell mass from alpha cells. Overall design: Transcriptional dissection of Artemether treated, human pancreatic islets of one donor using single-cell RNA-seq
Artemisinins Target GABA<sub>A</sub> Receptor Signaling and Impair α Cell Identity.
Subject
View SamplesType 1 diabetes is characterized by the destruction of pancrea tic beta cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types including glucagon-producing alpha cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of alpha cells to functional beta-like cells. Here we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalaria drugs, and that enhancement of GABAA receptor signaling contributes to the mechanism of action of these molecules in pancreatic transdifferentiation. Our results in zebrafish, rodents and primary human pancreatic islets indicate that gephyrin is a novel druggable target for the regeneration of pancreatic beta cell mass from alpha cells. Overall design: There are two parts in the transcriptional study on mouse cell lines in this project. One part is on Min6-ARX inducible cells with different induction time of Dox. This is done in three different clones. The other part is on alpha-TC1 cells. This is done in one concentration of Artemether, one time point and two biological repeats.
Artemisinins Target GABA<sub>A</sub> Receptor Signaling and Impair α Cell Identity.
Specimen part, Cell line, Subject
View SamplesPrevious results from a genome scan in a F2 Iberian by Meishan intercross showed several chromosome regions associated with litter size traits. In order to identify candidate genes underlying these QTL we have performed an ovary gene expression analysis during pregnancy. F2 sows were ranked by their estimated breeding values for prolificacy, the six sows with higher EBV (HIGH prolificacy) and the six with lower EBV (LOW prolificacy) were selected. Samples were hybridized to Affymetrix porcine expression microarrays. The statistical analysis with a mixed-model approach identified 221 differentially expressed probes, representing 189 genes. These genes were functionally annotated in order to identify the genetic pathways overrepresented. Among the most represented functional groups the first one was immune system response activation against external stimulus. The second group was made up of genes which regulate the maternal homeostasis by complement and coagulation cascades. The last group was involved on lipid and fatty acid enzymes of metabolic processes, which participate in steroidogenesis pathway. In order to identify powerful candidate genes for prolificacy, the second approach of this study was merging microarray data with position information of QTL affecting litter size, previously detected in the same experimental cross. According to this, we have identified 27 differentially expressed genes co-localized with QTL for litter size traits, which fulfill the biological, positional and functional criteria.
Differential gene expression in ovaries of pregnant pigs with high and low prolificacy levels and identification of candidate genes for litter size.
Specimen part
View SamplesHere we used microarray expression profiling to characterise global changes in gene expression during stages of proliferation and differentiation of human neural stem cells
Associations of the Intellectual Disability Gene MYT1L with Helix-Loop-Helix Gene Expression, Hippocampus Volume and Hippocampus Activation During Memory Retrieval.
Specimen part, Cell line
View SamplesThis study aimed to characterize differences in gene expression in piglets inoculated with porcine circovirus type 2 (PCV2), the essential causative agent of postweaning multisystemic wasting syndrome (PMWS). Comparisons between control and PCV2-inoculated pigs were done at five different time points: 1, 2, 5, 8, and 29 days post-inoculation.
Time course differential gene expression in response to porcine circovirus type 2 subclinical infection.
Age, Specimen part
View SamplesStudying the causes and correlates of natural variation in gene expression in healthy populations assumes that individual differences in gene expression can be reliably and stably assessed across time. However, this is yet to be established.
Assessing individual differences in genome-wide gene expression in human whole blood: reliability over four hours and stability over 10 months.
Sex, Age, Specimen part
View SamplesThe cholecystokinin B (2) receptor knockout (Cckbr KO) protects against allodynia induced by chronic constriction injury (CCI). The mechanism of this phenomenon is unknown, but must involve persistent changes in pain modulation and/or inflammatory pathways. We performed a gene expression study in two brain areas (midbrain and medulla) after surgical induction of CCI in Cckbr KO and wild-type (wt) control mice. The patterns of gene expression differences suggest that the immune system is activated in higher brain structures following CCI in the wt mice. The strongest differences include genes related to the MAPK pathway activation and cytokine production. In Cckbr KO mice this expressional pattern was absent. In addition, we found significant elevation of the Toll-like receptor 4 (Tlr4) in the supraspinal structures of the mice with deleted Cckbr compared to wt control mice. This up-regulation is most likely induced by the deletion of Cckbr. We suggest that there is a functional deficiency in the Tlr4 pathway which disables the development of neuropathic pain in Cckbr KO mice. Indeed, real time PCR analysis detected a CCI-induced upregulation of Tlr4 and Il1b expression in the lumbar region of wt but not Cckbr KO mice. Gene expression profiling indicates that elements of the immune response are not activated in Cckbr KO mice following CCI. Our findings suggest that there may be a role for CCK in the regulation of innate immunity.
Gene expression profiling reveals upregulation of Tlr4 receptors in Cckb receptor deficient mice.
No sample metadata fields
View SamplesLow incubation temperature during early development negatively affects survival and related innate immune processes in zebrafish larvae exposed to lipopolysaccharide Overall design: Zebrafish embryos were collected from 28 °C, and divided into three temperature groups (24 °C, 28 °C, 32 °C) for incubation. At the first-feeding stage, larvae from each incubation temperature group were further split into three temperature groups in a full-factorial way for LPS challenge. In total, nine temperature groups (three incubation temperatures x three challenge temperatures) were generated. At 24 h post LPS challenge, mortality of larvae were recorded. Larvae originating from 24 °C incubation temperature group had higher mortality rate than larvae from the other two temperature groups. LPS-treated larvae from three temperature groups, incubation 24 °C x challenge 24 °C, incubation 24 °C x challenge 32 °C, and incubation 32 °C x challenge 24 °C, together with their respective control were chosen for transcriptomic analyses using mRNA sequencing. A total of 722 genes were determined differentially expressed (DEGs) by DESeq2 (adjusted p-value < 0.05) in LPS-challenged larvae compared to control, and 605 of them had a fold change greater than 1.5, including 294 DEGs (144 up-/150 down-regulated) in larvae incubated and challenged with LPS at 24 °C; 33 DEGs (20 up-/13 down-regulated) in larvae incubated at 32 °C and challenged at 24 °C; and 278 DEGs (190 up-/88 down-regulated) in larvae incubated at 24 °C and challenged at 32 °C. Larvae incubated and challenged with LPS at 24 °C had stimulated innate immune response compared to control, while they also showed down-regulated innate immune processes and genes. In larvae incubated at 32 °C and challenged at 24 °C, the innate immune processes were up-regulated in larvae exposed to LPS compared to control, and theses processes were even much stronger (with higher enrichment values) than larvae from incubation and challenge temperature of 24 °C. In larvae incubated at 24 °C and challenged with LPS at 32 °C, limited innate immune response were up-regulated, and additional hypoxia and oxidative processes were observed. Genes annexin A2a, S100 calcium binding protein A10b, and lymphocyte antigen-6, epidermis were identified as promising candidates for LPS recognition and signal transduction.
Low incubation temperature during early development negatively affects survival and related innate immune processes in zebrafish larvae exposed to lipopolysaccharide.
Specimen part, Cell line, Subject
View Samples