Comparison of expression of Arabidopsis thaliana Col-0 and T-DNA insertion line of RAP2.4a under time dependent light stress by transfer to high light
Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks.
Specimen part
View SamplesInduction of the Arf tumor suppressor in response to hyperproliferative stress following oncogene activation activates a p53-dependent transcriptional program that limits the expansion of incipient cancer cells. Although Arf is not expressed in most tissues of fetal or young adult mice, it is physiologically expressed in the fetal yolk sac, a tissue derived from the extraembryonic endoderm. We demonstrate that expression of the mouse p19Arf protein marks late stages of extraembryonic endoderm differentiation in cultured embryoid bodies derived from either embryonic stem cells or induced pluripotent stem cells, and that Arf inactivation specifically delays the differentiation of the extraembryonic endoderm lineage, but not the formation of other germ cell lineages from pluripotent progenitors. Arf is required for the timely induction of extraembryonic endodermal cells in response to Ras/Erk signaling and, in turn, acts through p53 to ensure extraembryonic endoderm lineage development, but not maintenance. Remarkably, a significant temporal delay in extraembryonic endoderm differentiation detected during the maturation of Arf-null embryoid bodies is rescued by enforced expression of miR-205, a micro-RNA up-regulated by p19Arf and p53. Introduction of miR-205 into Arf-null embryonic stem cells rescues defective ExEn formation and elicits a program of gene expression that controls the migration and adhesion of embryonic endodermal cells. This occurs, at least in part, through atypical regulation of genes that control the epithelial-to-mesenchymal transition in cancer cells. Our findings suggest that noncanonical and canonical roles of Arf in extraembryonic endoderm development and tumor suppression, respectively, may be conceptually linked through mechanisms that govern cell-to-cell attachment and migration.
Arf tumor suppressor and miR-205 regulate cell adhesion and formation of extraembryonic endoderm from pluripotent stem cells.
Specimen part, Treatment
View SamplesThe goal of this study is to measure Arabidopsis mRNA transcription and mRNA decay rates genome wide at two temperatures, and thus to calculate the temperature coefficient of both processes. Sensing and response to ambient temperature is important for controlling growth and development of many organisms, in part by regulating mRNA levels. mRNA abundance can change with temperature, but it is unclear whether this results from changes to transcription or decay rates and whether passive or active temperature regulation is involved. Results Using a base analogue labelling method we directly measured the temperature coefficient (Q10) of mRNA synthesis and degradation rates of the Arabidopsis transcriptome. We show that for most genes transcript levels are buffered against passive increases in transcription rates by balancing passive increases in the rate of decay. Strikingly, for temperature-responsive transcripts, increasing temperature raises transcript abundance primarily by promoting faster transcription relative to decay and not vice versa, suggesting a global transcriptional mechanism process exists for the activethat controls of mRNA abundance by temperature/
Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response.
Specimen part, Treatment, Time
View SamplesMyc-driven Group 3 medulloblastoma (MB) is the most aggressive tumor among the four subgroups classified by transcriptome, genomic landscape and clinical outcomes. So far in all available mouse Group 3 models, the constitutive ectopic Myc expression was under control of LTR element or other exogenous promoters within the vectors, which were randomly inserted into the genome with multiple copies. Here we are deploying nuclease deficient CRISPR/dCas9-based transactivator that is targeted to promoter DNA sequences by specific guide RNA to force the transcriptional activation of endogenous Myc in p53-/-;cdkn2c-/- neurospheres cells. A combination of three sgRNAs together with dCas9-VP64 induced the highest expression of endogenous Myc. When the targeted cells were transplanted to the cortex of recipients, tumors arose fully recapitulate the Group 3 MB in human. This novel mouse model should significantly strengthen our understanding and treatment of the Myc-driven Group 3 medulloblastoma.
Mouse medulloblastoma driven by CRISPR activation of cellular Myc.
Specimen part
View SamplesDicer1 loss in the aP2-lineage leads to the development of aggressive and highly penetrant angiosarcomas independent of other oncogenes or tumor suppressor loss
Biallelic <i>Dicer1</i> Loss Mediated by <i>aP2-Cre</i> Drives Angiosarcoma.
Specimen part
View SamplesInvestigation of immune-cell differentiation and function is limited by shortcomings of suitable and scalable experimental systems. Here we show that retroviral delivery of an estrogen-regulated form of Hoxb8 into mouse bone marrow cells can be used along with Flt3 ligand to conditionally immortalize early hematopoietic progenitor cells (Hoxb8-FL cells). Hoxb8-FL cells have lost self-renewal capacity and potential to differentiate into megakaryocytes and erythrocytes but retain the potential to differentiate into myeloid and lymphoid cells. They differentiate in vitro and in vivo into macrophages, granulocytes, dendritic cells, B lymphocytes and T lymphocytes that are phenotypically and functionally indistinguishable from their primary counterparts. Quantitative in vitro assays indicate that myeloid and B-cell potential of Hoxb8-FL cells is comparable to that of primary lymphoid-primed multipotent progenitors, whereas T-cell potential is diminished. The simplicity of this system and the unlimited proliferative capacity of Hoxb8-FL cells will enable studies of immune-cell differentiation and function.
Hematopoietic progenitor cell lines with myeloid and lymphoid potential.
Specimen part
View SamplesThis study set out to identify MLX transcriptional targets in muscle cells. C2C12 Myoblasts were virally transduced to increase MLX activity, by overexpression of the wild-type protein; and to decrease MLX activity by overexpression of a dominant negative MLX protein and by shRNA induced knockdown of MLX. Transcripts that were significantly and consistently regulated by the different modes of MLX modulation were identified. The largest proportion of these were genes encoding secreted proteins including growth factors, cytokines and extracellular proteins. We therefore conclude that MLX can regulate myokine transcripts. Overall design: mRNA profiles from C2C12 muscle cells with increased and decreased MLX activity were examined.
The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling.
No sample metadata fields
View SamplesMorphogenesis of epithelial tissues relies on the precise developmental control of cell polarity and architecture. In the early Drosophila embryo, the primary epithelium forms during cellularisation, following a tightly controlled genetic programme where specific sets of genes are up-regulated. Some of them, for instance, control membrane invagination between the nuclei anchored at the apical surface of the syncytium.
IL-13 induces esophageal remodeling and gene expression by an eosinophil-independent, IL-13R alpha 2-inhibited pathway.
Specimen part
View SamplesGenetic fate mapping was preformed on aP2-Cre;tdTomato and aP2-Cre;tdTomato;SmoM2/+ animals and endothelial progenitor cells identified as the cell of origin of FN-RMS in aP2-Cre;SmoM2/+ animals
Hedgehog Pathway Drives Fusion-Negative Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors.
Specimen part
View SamplesWhole transcriptome for SKI knock-out and control HL60 cells was sequenced. SKI control and knockout samples were compared to find differentially expressed genes. Differentially expressed genes were further analysed to find the significance of SKI in HL60 cells. Overall design: Examining of SKI dependent transcriptome in HL60 cells using RNAseq.
Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1.
Specimen part, Cell line, Subject
View Samples