Human mesenchymal stem cells circulate in 1st and early 2nd trimester fetal blood, but not in adults. Like other fetal cell types they cross the placenta, and can be found in maternal organs decades later. To determine potential ligands in human fetal mesenchymal stem cells not present in maternal blood, the gene expression of 1st trimester human fetal bone marrow, liver and blood derived mesenchymal stem cells will be compared to blood mononuclear cells from pregnant women using a Affymetrix human gene array system.
Identification of candidate surface antigens for non-invasive prenatal diagnosis by comparative global gene expression on human fetal mesenchymal stem cells.
Sex, Specimen part
View SamplesEffect of high grain protein locus on barley grain protein accumulation. Gene expression levels were analysed in Karl, a low grain protein variety with its near-isogenic line 10_11(has high grain protein locus, chromosome 6)using Barley1 22k affymetrix chip. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Aravind Jukanti. The equivalent experiment is BB53 at PLEXdb.]
Comparative transcriptome profiling of near-isogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation.
Age, Specimen part
View SamplesAge-related defects in stem cells can limit proper tissue maintenance and hence contribute to a shortened life-span. Using highly purified hematopoietic stem cells from mice aged 2 to 21 months, we demonstrate a deficit in function yet an increase in stem cell number with advancing age. Expression analysis of more than 14,000 genes identified 1500 that were age-induced and 1600 that were age-repressed. Genes associated with the stress response, inflammation, and protein aggregation dominated the upregulated expression profile, while the downregulated profile was marked by genes involved in the preservation of genomic integrity and chromatin remodeling. Many chromosomal regions showed coordinate loss of transcriptional regulation, and an overall increase in transcriptional activity with aged, and inappropriate expression genes normally regulated by epigenetic mechanisms was observed. Hematopoietic stem cells from early-aging mice expressing a mutant p53 allele reveal that aging of stem cells can be uncoupled from aging at an organismal level. These studies show that HSC are not protected from aging. Instead, loss of epigenetic regulation at the chromatin level may drive both functional attenuation of cells, as well as other manifestations of aging, including the increased propensity for neoplastic transformation.
Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation.
No sample metadata fields
View SamplesBased on the findings of increased IEL in duodenal biopsies in CVID, an overlap with celiac disease has been suggested. In the present study, increased IEL, in particular in the pars descendens of the duodenum, was one of the most frequent histopathological finding. We therefore examined the gene expression profile in pars descendens of duodenum in CVID patients with increased IEL (n=12, IEL mean 34 [range 22-56] IEL/100 EC), CVID with normal levels of IEL (n=8), celiac disease (n=10, Marsh grade 3a or above) and healthy controls (n=17) by gene expression microarray
A Cross-Sectional Study of the Prevalence of Gastrointestinal Symptoms and Pathology in Patients With Common Variable Immunodeficiency.
Specimen part, Disease, Disease stage
View SamplesTo determine the global transcriptome changes in mantle cell lymphoma cells following treatment with the BET bromodomain antagonist, JQ1
Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib.
Specimen part, Treatment
View SamplesHematopoietic stem cells (HSC) continuously regenerate a complete hematologic and immune system. Very few genes that regulate this process have yet been identified. In order to identify factors governing differentiation, we have compared the transcriptome of highly purified HSC with their differentiated progeny, including erythrocytes, granulocytes, monocytes, NK cells, activated and nave T-cells, and B-cells. Chromosomal analysis revealed that HSC were more transcriptionally active than other cell types across most chromosomes. Each lineage expressed ~100 to 400 genes uniquely, including many previously uncharacterized genes. Overexpression of two fingerprint genes resulted in a significant bias in differentiation indicating a role in cell fate determination, demonstrating the utility of these data for modulation of specific cell types.
Hematopoietic fingerprints: an expression database of stem cells and their progeny.
No sample metadata fields
View SamplesThe BET (bromodomain and extra terminal) protein family members including BRD4 bind to acetylated lysines on histones and regulate the expression of important oncogenes, e.g., MYC and BCL2. Here we demonstrate the sensitizing effects of the histone hyperacetylation inducing pan-histone deacetylase inhibitor (HDI) panobinostat (PS) on human AML blast progenitor cells (BPCs) to the BET protein inhibitor JQ1. Treatment with JQ1 but not its inactive enantiomer (R-JQ1) was highly lethal against AML BPCs expressing mutant NPM1c+ with or without co-expression of FLT3-ITD, or AML expressing MLL fusion oncoprotein. JQ1 treatment reduced binding of BRD4 and RNA polymerase II to the DNA of MYC and BCL2, and reduced their levels in the AML cells. Co-treatment with JQ1 and the HDAC inhibitor panobinostat (PS) synergistically induced apoptosis of the AML BPCs, but not of normal CD34+ hematopoietic progenitor cells. This was associated with greater attenuation of MYC and BCL2, while increasing p21, BIM and cleaved PARP levels in the AML BPCs. Co-treatment with JQ1 and PS significantly improved the survival of the NOD/SCID mice engrafted with OCI-AML3 or MOLM13 cells (p < 0.01). These findings highlight co-treatment with a BRD4 antagonist and an HDI as a potentially efficacious therapy of AML.
Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells.
Specimen part
View SamplesBromodomain extraterminal protein (BETP) inhibitors transcriptionally repress oncoproteins and NFkB target genes, which undermines the growth and survival of MCL cells. However, BETi treatment causes accumulation of BETPs, associated with reversible binding and incomplete inhibition of BRD4, which potentially compromises the activity of BETi in MCL cells. Unlike BETi, BET-PROTACs (proteolysis-targeting chimera) ARV-825 and ARV-771 (Arvinas, Inc.) recruit and utilize an E3-ubiquitin ligase to effectively degrade BETPs in MCL cells. BET-PROTACs induce more apoptosis than BETi of MCL cells, including those resistant to ibrutinib. BET-PROTAC treatment induced more perturbations in the mRNA and protein expressions than BETi, with depletion of c-Myc, CDK4, cyclin D1, and the NFkB transcriptional targets Bcl-xL, XIAP and BTK, while inducing the level of HEXIM1, NOXA and CDKN1A/p21. Treatment with ARV-771, which possesses superior pharmacological properties compared to ARV-825, inhibited the in vivo growth and induced greater survival improvement than the BETi OTX015 of immune-depleted mice engrafted with MCL cells. Co-treatment of ARV-771 with ibrutinib or the BCL2-antagonist venetoclax or CDK4/6 inhibitor palbociclib synergistically induced apoptosis of MCL cells. These studies highlight promising and superior pre-clinical activity of BET-PROTAC than BETi, requiring further in vivo evaluation of BET-PROTAC as a therapy for ibrutinib-sensitive or resistant MCL. Overall design: Twelve samples in biologic triplicates
BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells.
Subject
View SamplesMetal tolerance is often a result of metal storage or distribution. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, natural variation of metal tolerance in Arabidopsis thaliana was investigated. Substantial variation exists in tolerance of excess copper (Cu), zinc (Zn) and cadmium (Cd). Two accessions, Col-0 and Bur-0, and a recombinant inbred line (RIL) population derived from these parents were chosen for further analysis of Cd and Zn tolerance variation, which is evident at different plant ages in various experimental systems and appears to be genetically linked. Three QTLs, explaining in total nearly 50 % of the variation in Cd tolerance, were mapped. The one obvious candidate gene in the mapped intervals, HMA3, is unlikely to contribute to the variation. In order to identify additional candidate genes the Cd responses of Col-0 and Bur-0 were compared at the transcriptome level. The sustained common Cd response of the two accessions was dominated by processes implicated in plant pathogen defense. Accession-specific differences suggested a more efficient activation of acclimative responses as underlying the higher Cd tolerance of Bur-0. The second hypothesis derived from the physiological characterization of the accessions is a reduced Cd accumulation in Bur-0.
Natural variation in Arabidopsis thaliana Cd responses and the detection of quantitative trait loci affecting Cd tolerance.
Specimen part, Treatment
View SamplesAmong the dendritic cell (DC) subsets, plasmacytoid DCs are thought to be important in both generating antiviral and antitumor responses. These cells may be useful in developing dendritic cell-based tumor vaccines, however, the rarity of these cells in the peripheral blood have hampered attempts to understand their biology. To provide better insight into the biology of plasmacytoid DCs, we isolated these cells from the peripheral blood of healthy donors in order to further characterize their gene expression. Using gene array technology we compared the genetic profiles of these cells to those of CD14+ monocytes isolated from the same donors and found several immune related genes upregulated in this cell population. Understanding the genetic profiles of this dendritic cell subtype as well as others such as the BDCA-1 expressing myeloid DCs may enable us to manipulate these cells ex-vivo to generate enhanced DC-based tumor vaccines inducing more robust antitumor responses.
Genetic profiles of plasmacytoid (BDCA-4 expressing) DC subtypes-clues to DC subtype function in vivo.
No sample metadata fields
View Samples